
Chapter

Chapter 9: Mapping in Layers

Mapping In Layers
This chapter presents the relationship between
tables and maps and how they are layered to create
the level of detail you want.

➤ Maps as Layers

➤ The Layers Collection:
Building Blocks of Your
Map

➤ Defining a Layer with a Data
Provider

➤ Caveats for Defining JDBC
Layers

➤ Adding a Layer to a MapJ
Layer Collection

➤ Annotation Layers

➤ Methods of the Layers
Collection

➤ Zoom Layering

➤ Generating Labels For a
Layer

➤ Raster Images

9

134 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Maps as Layers
You have already been introduced to the concept of computer maps as a collection of
layers. Each table that contains graphic objects can be displayed as a layer in a map
image. For example, you can display a
layer of customers, a layer of streets, and
a layer of county boundaries.

Think of these layers as transparencies
where each layer contains a different part
of the map. The layers are stacked one on
top of the other and allow you to see all
aspects of the map at once. For example,
one layer may contain country
boundaries, a second layer may have
symbols that represent capitals, and a
third might consist of highways. Laying these transparencies on top of each other
builds a map.

Layers are made up of geographic features and associated data. For example, a layer
of country boundaries has regions that define each country’s boundary and it might
have attributes that represent the population of each country, literacy rate, or average
household income. By creating a map of layers that have information attached, you
can go beyond the pretty map and query the layer for information that you can then
analyze and display. That kind of map is much more effective in showing
relationships among map data.

This chapter will focus on how to handle layers, such as defining a layer, adding a
new layer to a map, and the types of layers you can create and display.

The Layers Collection: Building Blocks of Your Ma
The Layers collection is accessible from MapJ and contains Layer objects. These Layer
objects, which are built from tables, make up your map. Each layer contains different
map features, such as regions, points, or lines. The Layers collection has methods used
to perform operations such as adding and removing Layer objects from the collection.
Layer objects have search methods that allow you to locate specific information on a
layer.

MapXtreme Java Edition Developer’s Guide 135

Chapter 9: Mapping in Layers

The Layer object represents data made up of map features that usually have a
predominant feature type, such as regions, lines, or symbols. Typically, a Layer object
corresponds to the geographic objects from one table. Each of the Layer objects in a
Layer collection behave independently of each other. Their styles may be changed,
zoom layering altered, etc., on an individual basis, without affecting any of the other
layers.

The Layer object makes use of several related classes such as ThemeList,
LabelProperties, FeatureSets, ColumnStatistics, and TableInfo. Besides methods for
accessing these objects, the Layer object also has search methods that allow you to
locate specific information on a layer. Through the Layer object, you can take
advantage of most of the MapXtreme functionality.

How to Build a Layers Collection
To build your map, you begin by adding layers to a Layers collection. In the previous
chapter we walked through the code that loaded the map data using
MapJ.loadMapDefinition and MapJ.loadGeoset. The Layers collection is defined by
the layers of this map definition. When a map definition is loaded, the numeric and
display coordinate systems are updated and any previous layers are removed.

Once you have created a Layers collection, you can add more layers. When you use
the Layers.addMapDefinition method, the layers are added to the current map and
the existing coordinate system settings are maintained. Layers can also be added
individually with the Layers.add method. The add method puts the Layer at the end
of the collection. Use insert to control the position.

How Layers Are Drawn
Map layers in a Layers collection display in increasing index order: Layer(0) is the top
layer, Layer(1) is the layer underneath Layer(0), etc., with the bottom layer drawn first
and the top layer drawn last. It is important to order your layers correctly.

For example, you have a layer of customer points and a layer of census tracts. If the
layers are incorrectly ordered in the Layers collection, MapXtreme will draw the
customer points first and then display the census tract layer second. Your customer
points would be obscured by the census tract layer. In the section "Methods of the
Layers Collection," we provide a code example for positioning layers.

136 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Defining a Layer with a Data Provider
To add a layer to a Layers collection, you must first define it. The key to defining a
layer is the Data Provider

Each layer has an internal object, a Data Provider, that is responsible for data access.
Data Providers are not created directly by users, but their description defines a layer.
The following three interfaces are used to describe a Data Provider (and thus a layer):

• TableDescHelper – describes the data

• DataProviderHelper – defines the source of the data

• DataProviderRef – describes how to get the data

MapXtreme Java has a number of DataProviders that allows you to create map layers
for the following data sources:

• MapInfo tab format (.tab)

• Oracle8i with Spatial Option

• Oracle 7.x and 8.x with SpatialWare

• Informix Universal Server SpatialWare DataBlade

• DB2 SpatialWare Extender

• JDBC compatible tables containing longitude and latitude columns

• GeoTIFF and MIGrid Raster

• ESRI Shapefiles

• Annotation 1

1. Not a typical Data Provider as the information is not stored in the database, but held in
memory. See page 146 for more information.

Oracle8i

 IUS Table

 DB2 Table

MapXtremeServlet

Data
Provider

Data
Provider

Renderer

Data
Provider

MapXtreme Java Edition Developer’s Guide 137

Chapter 9: Mapping in Layers

TableDescHelpers
The TableDescHelper is an interface that helps to describe the data that you are
accessing. There is a TableDescHelper for each different type of data source that
MapXtreme can access. Each one has constructor parameters specific to the data
source.

For example, the TABTableDescHelper that is used to describe a MapInfo table such
as world.tab needs only the table name to describe it. The OraSoTableDescHelper,
used to describe Oracle8i data, is defined by either a table name or SQL query. Code
examples are presented later in this chapter. Further details on each TableDescHelper
can be found in the HTML Reference.

DataProviderHelpers
DataProviderHelpers define the data source. In the case of MapInfo TAB files, the
directory containing a TAB file is the data source for that file. Therefore, the
DataProviderHelper for tab files, TABDataProviderHelper, takes a directory as its
only parameter.

Consider the example where a map is consists of several tables, all of which are stored
within an instance of Oracle8i database. This database is the data source for each of
the tables. The OraSoDataProviderHelper takes parameters that describe the data
source, e.g., server host name, server port number, user name, and password. The
same DataProviderHelper can be used for different tables from the same data source.
Further details on each DataProviderHelper can be found in the HTML Reference.

138 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

DataProviderRef
Data Providers have a built-in remoting capability. The DataProviderRef describes
who is responsible for accessing the data source. There are two possibilities: 1) the
application (process) that contains MapJ and this Layer can directly access the data
source, or 2) the application can defer to an instance of MapXtremeServlet to access
the data source, and then have MapXtremeServlet transport the data back to the
application.

Using a LocalDataProviderRef signifies that the application will directly
communicate with the data source. This means that any resources needed to access
the data source must be available to the application. For instance, a JDBC driver must
be on the classpath of the application in order for it to directly access data within an
RDBMS.

MapXtreme Java Edition Developer’s Guide 139

Chapter 9: Mapping in Layers

A MapXtremeDataProviderRef is used when one wants to defer the data access to
MapXtremeServlet. This is the typical case when using three-tier deployments. In this
case only a "stub" data provider will exist in the client and the real data provider will
be created by MapXtremeServlet, which then accesses data from the data source. With
this deployment the resources needed to access the data source are only put in the
middle tier. This avoids the need to have JDBC drivers deployed in the client, but still
allows MapXtremeServlet to access data within an RDBMS.

 When is Data Accessed?
The aforementioned interfaces are used to define a DataProvider. When a Layer is first
defined and created, no data access occurs. DataProviders only access their
underlying data source in response to a specific request such as a call to Layer’s
getTableInfo, a Layer’s search method, or a render request.

140 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Caveats for Defining JDBC Layers
Each JDBC data source has several corresponding DataProviderHelper constructors.
While some constructors are easier to use than others, we strongly recommend setting
up your JDBC Layers to use connection pooling. This requires using the most generic
form of the DataProviderHelper constructor. Connection pooling is discussed in
Chapter 10.

The TableDescHelper objects for JDBC Layers all share some common parameters.
When a JDBC Layer is defined as a table, rather than as a SQL statement, several of
these parameters are optional. These include the spatial column, coordinate system of
the geometry, dimension of the geometry, and the table level Rendition. The optional
parameters, if not present, are searched for within the
MapInfo.MAPINFO_MAPCATALOG. If you know the information for these values
we strongly recommend that you supply it when constructing the object. This will
eliminate extra queries to the MAPCATALOG and increase the performance of your
application.

When the primary key column(s) is not specified, MapXtreme interrogates the table
schema definition in the database to find a column or columns suitable for use as a
key. It will attempt to find the column(s) formally defined as the table primary key or,
if not present, it will choose a column that the database guarantees is unique to each
row, that is not a pseudo column and whose type is character or numeric. Identifying
the primary key column(s) in the TableDescHelper eliminates this overhead and
guarantees expected behavior when the primary key is used (e.g. in the Selection
class). Additionally, the primary key column(s) also receive special treatment when
adding features to a JDBC layer (see page 183), so specifying it in this case is also
important.

JDBC Layers now support per-Feature Renditions where each Feature stored in the
database can be given a possibly unique Rendition. This Rendition is stored as a
column called RENDITIONCOLUMN. The MapInfo EasyLoader v 6.0 supports this
column, however it does not include the column when it creates or updates the
MAPCATALOG. Future versions of the MapInfo EasyLoader will include this
column. Check the Web site for updates.

See Appendices B and C for more on EasyLoader and the MAPCATALOG.

MapXtreme Java Edition Developer’s Guide 141

Chapter 9: Mapping in Layers

Adding a Layer to a MapJ Layers Collection
This is the general procedure to add a layer:

1. Create the TableDescHelper

2. Create the DataProviderHelper

3. Create the DataProviderRef (requires the DataProviderHelper as input)

4. Use Layers.add method (takes DataProviderRef and TableDescHelper as
input). This puts the layer at the bottom of the collection, by default. You can
also use Layers.insert.

TableDescHelper and DataProviderHelper implementations exist for each type of
data source MapXtreme Java supports. The following table is a summary. See the

HTML Reference (Javadocs) for more information.

Code examples for TAB, Oracle8i, and JDBC compatiable data sources follow. Others
are provided in the HTML Reference.

Data Source TableDescHelper DataProviderHelper

MapInfo Tables TABTableDescHelper TABDataProviderHelper

Oracle8i with
Spatial Option

OraSoTableDescHelper OraSoDataProviderHelper

SpatialWare for
Oracle 7.3.x or
8.0.x

OraSpwTableDescHelper OraSpwDataProviderHelper

Informix Universal
Server SpatialWare
DataBlade

IusSpwTableDescHelper IusSpwDataProviderHelper

DB2 SpatialWare
Extender

Db2SpwTableDescHelper Db2SpwDataProviderHelper

JDBC compatible
tables containing
longitude and
latitude columns

XYTableDescHelper XYDataProviderHelper

Annotation Layers AnnotationTableDescHelper AnnotationDataProviderHelper

GeoTIFF Raster GeoTIFFTableDescHelper GeoTIFFDataProviderHelper

ESRI Shapefiles ShapeTableDescHelper ShapeDataProviderHelper

142 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

TAB Data Provider Example
The following is an example of creating a TABDataProvider and assigning the layer to
MapJ.

// specify the url to the MapXtreme servlet which
remotely

// connects us to the map engine

String MapXtremeURL = "http://localhost:8080/mapxtreme/
servlet/mapxtreme";

// create the tab Table Desc

TABTableDescHelper TabDesc = new TABTableDescHelper(new
File("mytab.tab").getName());

// create the tab Data Provider

TABDataProviderHelper DPHelper = new
TABDataProviderHelper("d:\\maps");

// Create the Remote Dataprovider needed to access the
Data

MapXtremeDataProviderRef MXDPRef = new
MapXtremeDataProviderRef(DPHelper, MapXtremeURL);

// assign it to MapJ

map.getLayers().add(MXDPRef, TabDesc, "tabLayer");

MapXtreme Java Edition Developer’s Guide 143

Chapter 9: Mapping in Layers

Oracle8i Data Provider Example
The following is an example of creating a Oracle8iDataProvider and assigning the
layer to MapJ. Be sure that the JDBC driver is in your classpath.

// specify the url to the MapXtreme servlet which
remotely connects us to the map engine

String mapXtremeURL = "http://localhost:8080/mapxtreme/
servlet/mapxtreme";

// Create the Remote Dataprovider needed to access the
Data

// Using pooled connections (Recommended). The
connection url must be of the form
“jdbc:mipool:resource_name”.

OraSoDataProviderHelper oraDPH = new
OraSoDataProviderHelper("jdbc:mipool:ProjectMaps",
null, null);

// Using Database specific DataProviderHelper

OraSoDataProviderHelper oraSoDPHelper=new
OraSoDataProviderHelper("databasename",1000, "DBsid",
"tester", "tester", DriverType.thin);

// Create a String array with the name(s) of the column(s)
to use as a unique key for records in the TableName

String[] idColumn = {"S_MEMBER"};

// Now create a Table Desc helper

// This code uses the Construtor required when using a
tablename

OraSoTableDescHelper oraSoTDHelper = new
OraSoTableDescHelper("STATES", false, idColumn,
"S_GEOMETRY",
null,RenditionType.none,CoordSys.longLatWGS84, 2,
"TESTER");

// This code uses the Construtor required when using a
Query

OraSoTableDescHelper oraSoTDHelper = new
OraSoTableDescHelper("Select S_MEMBER, S_GEOMETRY,
POP_1990 From STATES Where STATE = 'NY'", idColumn,

144 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

"S_GEOMETRY",
null,RenditionType.none,CoordSys.longLatWGS84, 2);

// Create the Remote Dataprovider needed to access the
Data

MapXtremeDataProviderRef mxtDPRef = new
MapXtremeDataProviderRef(oraSoDPHelper, mapXtremeURL);

//assign it to MapJ - note getLayers()

m_myMap.getLayers().add(mxtDPRef, oraSoTDHelper,
"OraSoLayer");

MapXtreme Java Edition Developer’s Guide 145

Chapter 9: Mapping in Layers

XY Data Provider Example
This code sample creates a Data Provider for a JDBC data source where the spatial
information is stored in X, Y columns. Be sure your JDBC driver is in your classpath.

// specify the url to the MapXtreme servlet which
remotely

// connects us to the map engine

String MapXtremeURL = "http://localhost:8080/mapxtreme/
servlet/mapxtreme";

// create the XY data provider

XYDataProviderHelper XYDPH = new
XYDataProviderHelper("sun.jdbc.odbc.JdbcOdbcDriver","j
dbc:odbc:Test","tester", "tester");

// Create a String array with the name(s) of the column(s)
to

// use as a unique key for records in the TableName

String[] idColumn = {"rowid"};

// Now create a Table Desc helper

// This code uses the Constructor required when using
a tablename

XYTableDescHelper XYTDH = new
XYTableDescHelper("myTable", "tester", false,
"longitude","latitude", renditionColumn,
RenditionType, idColumn, CoordSys.longLatWGS84);

// This code uses the Constructor required when using
a Query

XYTableDescHelper XYTDH = new
XYTableDescHelper("select longitude, latitude, rowid
from myTable", idColumn, "longitude","latitude",
renditionColumn, RenditionType,
CoordSys.longLatWGS84);

// Create the Remote Dataprovider needed to access the
Data

MapXtremeDataProviderRef MXDPR = new
MapXtremeDataProviderRef(XYDPH, MapXtremeURL);

//assign it to MapJ - note getLayers()

mapJ.getLayers().add(MXDPR, XYTDH, "xyLayer");

146 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Annotation Layers
Annotation layers are special map layers that contain features which are used to mark
or place emphasis on certain areas of the map. For example, to select and highlight
features within a certain radius of a point, use Layer.searchWithinRadius method
which returns a circular feature at the point. To display the search radius use the
createCircularRegion method of the FeatureFactory. Once the feature has been
created, use the addFeature method to add the new feature to the Annotation layer.
You can create the Annotation layer before or after the search.

You may have more than one Annotation layer. The table for an annotation layer
resides in memory. It is created using the AnnotationDataProviderHelper, the
Annotation TableDescHelper and a LocalDataProviderRef. Once created, it can be
treated like any other layer. Here’s an example of creating an Annotation Data
Provider and adding it to the MapJ Layers collection:

// create the annotation table desc helper

AnnotationTableDescHelper annTDHelper = new
AnnotationTableDescHelper("annLayer");

// create the annotation data provider

AnnotationDataProviderHelper annDPHelper = new
AnnotationDataProviderHelper();

// An Annotation layer requires the use of local memory
space, so we create a Local DataProvider Ref

LocalDataProviderRef localDPRef = new
LocalDataProviderRef(annDPHelper);

//assign it to MapJ - note getLayers()

mapJ.getLayers().add(localDPRef, annTDHelper,
"AnnLayer");

MapXtreme Java Edition Developer’s Guide 147

Chapter 9: Mapping in Layers

Methods of the Layers Collection
Now that you’ve added some layers, you will likely need to make some changes to
the Layers collection. This section describes several methods to help. In your
applications you will be frequently referencing objects and methods through the
Layers collection.

Get the Name of Layers in a Collection
This example tells you the number of items, in this case the number of layers, in a
collection. This is used if you want to cycle through each item in the collection, for
example, getting the names of each item:

// The following example loops through all the layers and
gets each layer's name

Layers layers = myMap.getLayers();

Layer layer;

String layerName;

for (int i=0; i < layers.size(); i++)

{

layer = layers.elementAt(i);

layerName = layer.getName();

}

Get a Layer from the Collection
The getLayer method gets a specific Layer object from the collection. The getLayer
method returns one of the layers as an object. You can reference layers by their names,
such as Highways or Cities. You may also reference a layer by its position. The
elementAt method returns the layer at a given position in the collection, such as 0, 1,
2, and so on. The index is zero-based. The following examples demonstrate both uses:

Layer myLayer;

myLayer = myMap.getLayers().getLayer("highways");

myLayer = myMap.getLayers().elementAt(5); //gets the 6th
layer

148 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Insert a Layer
The insert method adds a layer to the Layers collection given DataProvider
information and the position at which to place the layer. Similar to adding a layer,
when inserting a layer you must provide a DataProviderRef and TableDescHelper.
Any layers in the collection that come after the inserted layer are shifted down one
position.

// inserting a layer at position 5

layers.insert(dataProviderRef, tableDescHelper, 5,
"newLayer");

Move a Layer
The move method repositions a layer in the Layers collection. The first parameter is
From position (the top layer = 0) and the second parameter is the To position.

// moving a layer from the bottom to the top

layers.move(layers.size() - 1, 0);

Remove a Layer
The remove method removes a specified layer from the map.

//removing a layer by position (top layer)

layers.remove(0);

//removing a layer by name

layers.remove("highways");

Remove All Layers
The removeAll method removes all layers from the map.

//removing all layers

layers.removeAll();

The MapJ HTML Reference has a complete listing of Layers collection methods and
properties.

MapXtreme Java Edition Developer’s Guide 149

Chapter 9: Mapping in Layers

Zoom Layering
Sometimes you want a map layer to display only at certain zoom levels. Zoom
layering controls the display of a map layer only when the map's zoom level falls
within a preset distance. You can set a different zoom layering level for each layer.

For example, if your map includes a street layer, you may find that the streets become
illegible when the user zooms out too far. Using Zoom Layering, set up your map so
that MapXtreme does not display the streets whenever the user zooms out beyond a
certain distance, for example, five miles.

The following sample code sets up Zoom Layering by modifying the Layer object’s
properties so that the layer only displays if the map’s zoom is between 10 and 30 km.

// set layer for zoom layering from 10 to 30 kilometers

layer.setZoomLayer(true);

layer.setZoomMin(10.0, LinearUnit.kilometer);

layer.setZoomMax(30.0, LinearUnit.kilometer);

You can set a different zoom level for every layer in your map. For example, you have
a layer of streets, a layer of county boundaries, and a layer of state boundaries. You
want the streets layer to be visible only when the zoom level is less than eight miles.
You want the county boundary layer to display when the zoom level falls between 20
miles and 200 miles. You want the states boundary layer to be visible only when the
zoom level is greater than 100 miles.

150 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Generating Labels For a Layer
MapXtreme provides many ways to label attributes of geographic objects in a map
layer. The location where they are drawn is based on the location of the geographic
object’s label point. This approximates, but is not necessarily the object’s centroid.

As attributes, labels are

dynamically connected to their
map objects. If the data or

geographic information
changes, the labels change. The
content of the label is
determined by the data
associated with the geographic
object.

Layers can be set to be
automatically labeled using
Layer.setAutoLabel method.
The method isAutoLabel returns True or False if the layer will be autolabeled.

In addition to label content, you control the display and style of automatic labels by
using methods of the LabelProperties class. You can set conditions for displaying
labels, in what style they will display, and what priority they have over all the objects
in the layer.

Labeling has been greatly enhanced in this release of MapXtreme, enough so that it
warrants a separate discussion. See Chapter 12: Labeling and Renditions.

MapXtreme Java Edition Developer’s Guide 151

Chapter 9: Mapping in Layers

Raster Images
Raster images are another type of layer you can include in your map. Rasters are
computerized pictures consisting of row after row of tiny dots (pixels). These are
sometimes known as bitmaps. Aerial photographs and satellite imagery are common
types of raster data found in GIS.

You can display raster images in your MapXtreme Java application as backdrops to
the maps you create. You then can overlay additional data, such as street maps and
customer locations, on top of the image.

To display a raster image as a map layer, the image must contain geographic
registration information, which are coordinates that correspond to earth locations.
This will define the proper placement of the image in a map.

MapXtreme Java supports two types of raster images:

• Images that use an associated .tab file containing the geographic registration
information. Raster images of this type include TIFF, JPEG, GIF, BMP, PNG,
XBM, and MIG (MapInfo Grid).

• Images that have registration information contained in special tags in the
image file. Formats of this type include GeoTIFF and MIG2.

2. Note: While it is not necessary for a MIG file to have an associated .tab file, you cannot open
a MI Grid image with Map Definition Manager directly. Open the associated tab file instead.

152 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

To register an image as a geographically correct image, you can bring the image into
MapInfo Professional and register it there. Many USGS map images come with an
associated .tab file.

Adding Raster Layers to MapJ
Raster images are brought into a map in the same way other map layers are added —
by creating a Data Provider that describes the image and its location. In the case of

rasters with associated .tab files, you would create a TABDataProvider. For GeoTIFF
images, you would create a GeoTIFFDataProvider.

MapXtreme Java implements a flexible raster handling scheme to allow data
providers to be created dynamically. In the case of the TABDataProvider, MapXtreme
Java reads property information from the rasterhandlerfactory.properties file, which
contains specific information about what raster handlers are available and in which
order they should be tried. The items in the list are placed in a specific order to
facilitate better raster handling. When the Data Provider is being created, the list is
traversed. If the raster handlers that you will most likely be using are at the top of the
list, performance will improve. You can reorder the list, if necessary.

The following raster Data Providers are available for TABDataProviders:

• JDKRasterDataProvider: Handles all JDK supported raster formats, currently
JPEG and GIF.

• TIFFRasterDataProvider: Handles uncompressed, palette TIFF images. This is
a very specific type of TIFF file, and provides speed and scalability
performance.

• JimiRasterDataProvider: Will attempt to handle all other raster formats.

 Note: If an image cannot be handled by one of the above raster Data Providers,
then an exception is thrown indicating the specific file that cannot be
handled.

The GeoTIFFDataProvider works similarly to the TABDataProvider but uses the
geotiffdataprovider.properties file instead. The GeoTIFF handler cannot read tab
files, so it must be added to a layer by itself.

MapXtreme Java Edition Developer’s Guide 153

Chapter 9: Mapping in Layers

The following code illustrates the how to create a GeoTIFFDataProvider and add the
GeoTIFF image to a map. In this case, the image is stored on the local system and
retrieved by the LocalDataProviderRef.

// Create a TableDescHelper that points to the Tiff image

GeoTIFFTableDescHelper geoTiffTDHelper = new
GeoTIFFTableDescHelper("e:\\image\\geotiff.tif");

// Create DataProviderHelper (**note this constructor
takes

// no parameters)

GeoTIFFDataProviderHelper geoTiffDPHelper = new
GeoTIFFDataProviderHelper();

// If the data is local, use a LocalDataProviderRef

LocalDataProviderRef localDPRef= new
LocalDataProviderRef(geoTiffDPHelper);

// Insert the layer into the map layer collection

map.getLayers().add(localDPRef, geoTiffTDHelper, "GeoTIFF
Layer");

Considerations for Raster
The following sections offer things to keep in mind when using raster images.

Set Display to Raster Coordinate System
When adding a raster image to your map, make sure to set MapJ’s display and
numeric coordinate system to the raster layer’s coordinate system since MapXtreme
Java does not reproject raster images.

This code example shows how to determine the coordinate system for a raster layer
and set the display and numeric coordinate systems accordingly:

TableInfo ti= rasterLayer.getTableInfo();

CoordSys cSys= ti.getCoordSys();

myMapJ.setDisplayCoordSys(cSys);

myMapJ.setNumericCoordSys(cSys);

154 MapXtreme Java Edition Developer’s Guide

Chapter 9: Mapping in Layers

Rasters and Performance
Due to the added demands of raster imagery, we recommend that you start your
server or application with an expanded maximum heap size of 64 MB or more
depending on your application and the types of raster files you use.

For example, to increase the maximum heap size when you are loading layers using
the Map Definition Manager, from the command line, type:

java -mx64M com.mapinfo.mapdefman.MapDefManager

TIFF Images
Any handling of TIFF images must be done locally. The Renderer object and the TIFF
file must exist on the same machine because the TIFF files need to be read as a random
access file.

MI Grid Rasters
One of the raster image types that MapXtreme Java can display is a MI Grid raster
(file extension .MIG). These are thematically shaded maps that are created in MapInfo
Professional that show the data as continuous color gradations across the map. This
type of thematic mapping is produced by an interpolation of point data from the
source table. MapInfo Professional generates a grid file from the data interpolation
and displays it as a raster image.

MI Grid images can be used like any other raster image. The registration information
for the image is contained in an associated .tab file, so you must use the
TABDataProvider to add it to a MapXtreme Java map.

Grid files for US rainfall, temperature and elevation are included in the MapXtreme
Java sample data. To display a Grid file using Map Definition Manager, open the
associated .tab file. You cannot open the .mig file directly with MDM. For more
information on creating MI Grid files, see the MapInfo Professional documentation.

MapXtreme Java Edition Developer’s Guide 155

Chapter 9: Mapping in Layers

GIF Transparency
MapXtreme Java supports the ability to make a portion of the map image transparent
to allow the layer below to show through. This is only available if the image is in GIF
format of type 89a or later (type 87a does not support transparency.)

A GIF file is a palette-based raster format, where a given pixel value is determined
from a lookup in a 256-color palette. Any of these colors can be transparent; however,
MapXtreme Java only supports transparency for one palette entry per image.

To allow a certain palette entry to be made transparent, edit the file with an image
editor, such as Paint Shop Pro™. See your image editor documentation for using
transparent colors.

The illustration below shows an image on the left with a white border that, after
setting the transparency in an image editor, is now transparent.

