
Chapter

Chapter 8: MapJ

MapJ API
This chapter is the first of six chapters that cover the
MapJ API, beginning with the MapJ object and
instructions on programming your first map.

➤ MapJ Object

➤ Creating Your First Map

➤ Rendering Considerations

➤ Controlling the Map View

➤ Adding a Layer

➤ Beyond the Basic Map

8

122 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

MapJ Object
MapJ is a small light-weight component that provides an interface for the creation of
maps by MapXtremeServlet or by itself. MapJ can make two types of requests: a
request for data in vector form, called features, or a request for a map image file.
MapJ’s job is to maintain the state of the map, including keeping track of the layers,
coordinate system, distance units and map bounds.

MapJ objects can be configured to work with different types of Renderers and
DataProviders. In the most typical configuration MapJ is a client of
MapXtremeServlet. MapJ sends requests to a MapXtremeServlet instance and as part
of the request provides the servlet with its current state. MapJ obtains map images
and data from the servlet.

MapJ can also work stand-alone to directly obtain map data and produce map images.
A strength of MapXtreme's component-based design is that MapJ can be configured
with other variations. For instance, MapJ can be configured to access map data via one
or more instances of MapXtremeServlet, but still be responsible for displaying the
map image. See Chapter 4: Planning Your Application, for more information on
configuration options.

The MapXtreme Java object model poster included with the product shows that
almost every object, property, and method is derived from the MapJ object. Every
method shown underneath the MapJ object will contribute to building the overall
MapJ object. Primarily, the Data Provider, Layers, and Feature objects define each
MapJ object. The other objects on the MapXtreme diagram contribute to the creation
and rendering of the MapJ object; these are the Data Provider objects and the
Renderer objects.

MapXtreme Java Edition Developer’s Guide 123

Chapter 8: MapJ

The diagram below shows the relationship among the objects that contribute to
making a map. A MapJ object is made up of a Layers collection, which consists of
individual layers. Related objects include themes, renditions, and label properties.

This chapter focuses on the steps to build a map and carry out map-level
manipulations. In the following chapters, we will go into more detail about working
with individual layers, features, themes, renditions, and labeling.

To begin creating a mapping application, you must start by creating a MapJ object.
The following section describes the process necessary to generate a map.

Creating Your First Map
The following outlines the general process of creating a map using the MapJ API. In
this casee, MapJ is communicating its request to MapXtremeServlet.

1. Create a MapJ Object.

2. Load map data.

3. Set map device bounds.

4. Render the map to an image file.

1. Initialize a MapJ Object
Before you can use a MapJ object or its methods in your application, you must first
initialize MapJ. This is done simply with the following Java code:

myMap = new MapJ();

M a p J L a y e r s

L a y e r

F e a tu re S e t

R e n d i t io n

F e a tu re

L a b e l
P ro p e r t ie s

T h e m e L is t

T h e m e

124 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

2. Load Map Data
Once the MapJ object has been created, you must load map data. You can load a
geoset or Map Definition.

A geoset is a collection of MapInfo .tab format map layers and their settings, similar to
a workspace. Map layers are saved to a geoset with the extension .gst. The
MapXtreme Java sample data contains a number of geosets covering world
geography.

A Map Definition describes a collection of map layers and their settings, and can be
either data stored in a file or as a record in a remote database. Information in a Map
Definition (.mdf) is stored as XML.

Map Definitions are strongly preferred over geosets because you can access a wide
variety of data providers. Geosets are specific to .tab files. You can, however, save a
geoset as a Map Definition, using the Map Definition Manager (see Chapter 14:
Managing Your Data).

When map data is loaded, it clears all loaded layers, and then loads the new data.
There is no default map definition setting in MapXtreme Java Edition. Therefore, as
part of your initialization process, you must set a default map definition.

The following is an example of loading a geoset file:

myMap.loadGeoset(geosetName, dataDir, servletURL);

where

geosetName is the full path to the geoset

dataDir is the location on the server machine of the .tab files referenced in the
geoset (may not be the same machine at MapXtremeServlet)

servletURL is the path to the MapXtremeServlet when MapJ is using a remote
DataProviderRef (if using LocalDataProviderRef parameter is NULL).

For example:

myMap.loadGeoset("c:\\mapxtreme\\maps\\world.gst",
"c:\\mapxtreme\\maps", "http://localhost:8080/
mapxtreme/servlet/mapxtreme");

To load a map definition, you must first create a MapDefContainer which is an
abstraction that represents where the map definition is stored.

MapXtreme Java Edition Developer’s Guide 125

Chapter 8: MapJ

Create a FileMapDefContainer if the map definition is stored in a file:

MapDefContainer mdc = new FileMapDefContainer(dir)

where dir = full path to the map definition file

For example:

MapDefContainer mdc = new
FileMapDefContainer("c:\\mapxtreme\maps\")

Create a JDBCMapDefContainer if the map definition is stored in a record in an
RDBMS:

MapDefContainer mdc = new JDBCMapDefContainer(driver,
url, user, password)

where drive , url, user and password are database connection parameters.

The following example creates a Oracle Spatial MapDefContainer where the map
definition is stored in a table in the database:

OraSoMapDefContainer mdc = new
OraSoMapDefContainer("oracle.jdbc.driver.OracleDriver"
, "jdbc:oracle:thin:@machinename:1521:dbSid",
"username", "password", "tableName", "Name",
"Map_Definition");

To load the map definition:

myMap.loadMapDefinition(mapDefContainer, name)

where mapDefContainer = the above defined container class

name = the map to load from the container (the name used in the
saveMapDefinition command).

For example:

myMap.loadMapDefinition(mdc, "Asia");

3. Set Map Device Bounds
Set the size of the rendered map image using MapJ.setDeviceBounds(). This is set
before the map is rendered. The Device Bounds set the dimensions, in pixels, of the
image that will be returned from the Renderer. For example, you may want to return a
map that is 800x600. The default image size is 640x480.

To set the Device Bounds, use the setDeviceBounds method of the MapJ object.

myMap.setDeviceBounds(new DoubleRect(0, 0, 800, 600));

126 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

4. Render the Map
To render the map you must instantiate a renderer object, assign it to MapJ, render the
map, and dispose of the renderer. The following example uses a
MapXtremeImageRenderer and renders the image as a GIF file.

Instantiate a renderer object:

MapXtremeImageRenderer renderer = new
MapXtremeImageRenderer(mapxtremeServletUrl);

where mapxtremeServletUrl = URL to MapXtremeServlet, such as http://
localhost:8080/mapxtreme/servlet/mapxtreme.

Assign this object to MapJ object:

myMap.render(renderer);

Render the map to file:

renderer.toFile(“myMap.gif”);

Dispose of the renderer:

renderer.dispose();

The MapXtremeImageRenderer returns an image of all of the specified layers. When a
MapXtremeImageRenderer's render method is called, a request is made to
MapXtremeServlet, which then produces an image on the server. The image is
returned to the user only when a toFile, toStream, or toImage method is invoked.

Alternatively, if you have configured MapJ to work as stand-alone to directly obtain
map data and produce images, instead of MapXtremeImageRenderer, you would use
LocalRenderer to render the image locally.

Interaction can occur between the MapJ client and the MapXtremeServlet without
using the Renderer. However, the Renderer is the only way that a map image will be
returned to the user. You could create and initialize a MapJ object and execute several
methods that manipulate the object or query a map, but in order to see the current
map, you must use the render method. This is useful if you would rather create the
map in several steps, and then display it.

MapXtreme Java Edition Developer’s Guide 127

Chapter 8: MapJ

Map Rendering Considerations
The above example renders a map as a GIF image, one of a number of supported
raster output formats. Output formats of raster images are specified in the
MapXtremeImageRenderer constructor by MIME type. MIME is a format standard for
non-textual data such as images. The following guidelines can help you decide which
type is appropriate for your needs:

• image/jpeg – JPEG – good for layers with more than 256 colors.

• image/gif – GIF – good for vector layers or layers with up to 256 colors.

• image/png – PNG – a replacement for GIF format; more than 256 colors.

For example, to output a JPEG, use the constructor of MapXtremeImageRenderer that
takes the MIME type "image/jpeg," as shown here:

MapXtremeImageRenderer(URL, "image/jpeg");

Note: The MapXtremeImageRenderer constructor on the previous page did not take a
MIME type for image/gif as GIF is the default output format.

When using raster files, we suggest you use JPEG output. GIF output is limited to a
maximum of 256 colors and raster files generally have at least 256 RGB or gray scale
colors. Adding a vector layer may bring the total number of colors to greater than 256.
If this happens, the colors must be reduced, which is a time intensive operation. It's
faster saving to JPEG or PNG.

Setting the Quality of a JPEG Image
You can control the quality of the JPEG output by setting the parameter jpegQuality
in your servlet container. For example, in Tomcat, edit the web.xml file under the
\mapxtreme\WEB-inf directory to contain a value for JPEG quality.

<init-param>
<param-name>

jpegQuality
</param-name>
<param-value>

85
</param-value>

</init-param>
The jpegQuality value ranges from 0-100, with the default at 75. A lower number
means the image quality is reduced, but results in a smaller image size.

128 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

Controlling the Map View
Once your map is displayed, you will likely want to change its view to see map detail
closer up, or to gain a wider view.

MapJ has several methods for controlling the map view: setZoom(), setCenter(), and
setZoomAndCenter().

Setting the Zoom Level
The zoom level is the distance across the map. You may change the zoom level to any
distance. The units used will be the current distance units. The zoom level is first set
when the geoset or map definition file is loaded. To change the zoom level of the map,
use the setZoom method. The following example sets the zoom level:

// Assuming that the current distance units are
kilometers,

// this command will set the map zoom to 500 kilometers.

myMap.setZoom(500);

Recentering the Map
Part of controlling the map view is setting the center of the map. You may want to
center on a found location or a particular coordinate. The setCenter method
accomplishes this. You must pass a DoublePoint to the setCenter method. A
DoublePoint is defined by a pair of XY double precision points.

The point location, if it is the result of a user clicking on the map at a certain location,
is typically returned in pixels. MapJ requires the location to be in numeric coordinates,
so a conversion method, transformScreenToNumeric , is necessary.

The following example creates a screen point, converts it to a "real world" point and
sets the center of the map. DoublePoint is a point defined by double precision
coordinates (x,y).

// Create the screen point

screenpoint = new DoublePoint(event.getX(),event.getY());

// Create the real world point

worldpoint = myMap.transformScreenToNumeric(screenpoint);

// Set the center of the map

myMap.setCenter(worldpoint);

MapXtreme Java Edition Developer’s Guide 129

Chapter 8: MapJ

Setting the Map Bounds
Use setBounds to set the bounding rectangle for the map. The method takes a
DoubleRect, which is defined by coordinates that represent either the two opposing
corners, or its center point, width, and height. Both ways are illustrated below.

This example uses opposing corners to set the bounds to the entire world:

DoubleRect bounds = new DoubleRect(-180,-90,180,90);

This example uses opposing corners to set the bounds to a zoomed-in map area:

DoubleRect bounds = new DoubleRect(-1.969272, 50.560410,
1.443363, 52.315529);

This example uses the center point, width, and height to set the bounds for the world:

DoubleRect bounds = new DoubleRect(new
DoublePoint(0,0),360,180);

myMap.setBounds(bounds);

Setting the Coordinate System
Coordinate system data is stored in a projection file called mapinfow.prj that can be
found in the server directory where MapXtreme Java is installed. The PRJ file is the
same used in MapInfo Professional and lists hundreds of supported coordinate
systems and the parameters that define them.

Coordinate systems are set through the MapJ method setDisplayCoordSys.

String csProj = new String("\"Azimuthal Equidistant
(North Pole)\", 5, 62, 7, 0, 90, 90");

CoordSys ts = csf.createFromPRJ(csProj);

myMap.setDisplayCoordSys(ts);

Additionally, you can set the coordinate system using createFromMapBasic to read
MapBasic strings and through some pre-defined constants.

For more information see the CoordSys class in the HTML API Reference.

Setting the Map Distance Units
Units are set through the MapJ method setDistanceUnits

distUnit = LinearUnit.INDEX_KILOMETER;

myMap.setDistanceUnits(distUnit);

130 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

Adding a Layer
One of the more used methods of the MapJ API is the add method of the Layers object
which allows you to bring additional data into your map. While the add method is
simple enough to call, there are a number of steps that must precede it to describe
what data to add, where to get it from and how to get it. Data can come from local or
remote data sources, in the form of files or records from a database. In order to
manage this operation, MapXtreme Java uses Data Providers, which are fully
explained in Chapter 9, Mapping in Layers.

To access the Layers collection, use MapJ’s getLayers method.

Beyond the Basic Map
Now that you’ve had a chance to display a basic map and manipulate the view, you
will want create a more sophisticated map that represents the information you want
to impart to your viewers. MapXtreme Java provides the API that allows you to
control every aspect of the map. This section introduces you to some of them.

Features
Anyone who has worked with databases is familiar with the idea of a record. A record
is a set of related columns of information. For example, a database of customers will
have a record for each customer that includes columns for name, address, interest, etc.
A feature is simply a record that combines tabular data and geometric information.

For example, the file World.tab from the MapXtreme sample data is a MapInfo format
database. For each country, there is a record. Each record includes several columns of
tabular data as well as a reference to the geometric information that describes the
shape and location of each country. This allows it to be displayed on the map. The
tabular data is referred to as attribute data, and the geometric data is referred to as the
geometry. These two types of data make a feature.

Features are not directly connected to the MapJ object, but are important for several
reasons. As explained earlier, MapJ is the base for all of the map functions in your
program. It sits at the top of the object diagram.

A Feature object sits at the lowest level of your program and deals with specific
information. It is one of the most specific objects in the object model and relates to
record level information. It is at the Feature level that the graphic objects can be given

MapXtreme Java Edition Developer’s Guide 131

Chapter 8: MapJ

different display characteristics. The characteristics that specify the appearance of a
graphic object are set by the Rendition object.

Information on Feature objects can be found in the Chapter 11: Features and Searches.

Renditions
Every feature has a rendition associated with it that describes how it is to look on a
map. Rendition properties can be grouped into three general categories: fill, stroke,
and symbol. The fill properties control how a region is filled. The stroke properties
control how a line (either a line geometry or the edge of a region) will be drawn. The
symbol properties control how symbols are drawn for either point geometries, line
markers, or symbol fills.

The portion of the MapJ API that controls renditions is the Rendition class. The
combinations of renditions that you can achieve are practically unlimited due to the
variety of methods available. Renditions can be assigned to Features, Layers, Labels,
and Themes and can be used to override symbology. For more on renditions, see
Chapter 12: Labeling and Renditions.

Themes
Whether layers are added by the Layers’ add method, MapJ’s loadGeoset method or
loadMapDefinition method, each layer will have its own characteristics such as a
line’s color, its width, etc. These characteristics are based on the information in the
geoset or in the data source. Usually these settings are consistent for an entire layer.
For example, if you load World.tab from the sample data, each country displays with
a solid, green fill pattern. Every feature in the layer appears the same way.

Themes allow you to programmatically change the appearance of some or all of the
features in a layer based on some criteria. For example, if you wanted to change the
color of all of the world countries that have a population over fifty million, you could
accomplish that with a theme. There are four Theme classes available:

• OverrideTheme – for changing the rendition of an entire layer

• RangedTheme – for grouping data into ranges and shading based on range
value

• IndividualValueTheme – for shading groups of features which share a specific
attribute value

• SelectionTheme – applies a rendition to a user-defined list of selected features

132 MapXtreme Java Edition Developer’s Guide

Chapter 8: MapJ

Note: IDSelectionTheme, a type of theme available in previous releases, has been
deprecated. The IndividualValueTheme and SelectionTheme provide all the
IDSelectionTheme functionality and more.

The features in each theme all have a rendition associated with them. The Rendition
object encapsulates the style properties for both graphic and text displays.

For more on theme mapping, see Chapter 13.

