
Chapter 

Chapter 7: Writing Your Own 
Servlets

Writing Your Own Servlet

This chapter shows you how you can deploy your 
mapping application using servlets (server-side 
Java programs). 

➤  Introduction

➤  Requirements for Using 
Servlets

➤  Working with Servlets

➤  Sample Servlet: 
HTMLEmbeddedMapServlet

➤  JDeveloper 3.x Servlet 
Wizard

➤  Using the Servlet Utility 
Library (MapToolkit)

➤  Tutorial: Adding Thematic 
Capabilities to Your Servlet

7



98 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

Introduction
Servlets are Java components that are used to extend the functionality of web servers. 
Servlets are to servers what applets are to browsers, except servlets have no graphical 
user interface. 

The mapping engine in MapXtreme Java is deployed as a servlet. It conforms to the 
Java 2 Enterprise Edition architecture and must be run from within a servlet container, 
ideally one that is J2EE compliant (minimum JSDK 2.0) By doing so, the servlet 
container manages non-mapping tasks such as load balancing, threading, and fault 
tolerance, and allows MapXtremeServlet to do what it does best — handle requests 
for maps. 

This chapter discusses how to develop a mapping servlet that acts as a "client servlet" 
to MapXtremeServlet. You would deploy your application in a three-tier 
configuration that has minimal requirements on the client side (e.g., a browser). This 
"thin-client" deployment is best when speed is important to you, such as for an 
Internet application. This configuration handles multiple requests with ease, and can 
be designed to forward requests to other servlets and servers. 

The illustration below shows how a client servlet fits into a three-tier MapXtreme Java 
deployment.



MapXtreme Java Edition Developer’s Guide 99

Chapter 7: Writing Your Own Servlets

Requirements for Using Servlets
Before compiling a servlet source program, you may need to configure your Java IDE 
to include a servlets jar file (e.g., servlets.jar) in your IDE’s classpath.

Working with Servlets
Your servlet can contain a variety of mapping functionality to meet the needs of your 
application. For example, you can construct a servlet that offers basic map navigation 
such as pan, zoom in, zoom out, and measure distance between points. If you need a 
more sophisticated application, consider offering selection or thematic mapping 
capabilities. 

This chapter covers the following topics: 

• Sample servlet HTMLEmbeddedMapServlet (ships with MapXtreme Java)

• Servlet Wizard in JDeveloper 3.0 for Windows

• MapToolkit library of servlet methods

• Tutorial: Adding Thematic Shading to a Servlet

Sample Servlet: HTMLEmbeddedMapServlet
The HTMLEmbeddedMapServlet is a sample servlet that ships with MapXtreme Java. 
You can find it in \sampleapps\java\servlet. A pre-compiled version is also provided 
in a jar file in the MapXtreme directory (mxtjsampleservlet30.jar).

HTMLEmbeddedMapServlet provides an HTML page embedded with these basic 
mapping elements:

• Map frame that displays the map

• Radio buttons for Zoom In, Zoom Out, Pan

• Map Width box for user to type in new map width

• Apply button to apply the map width

• Layer Settings link that displays a table of layers that can be turned on or off

• Toggle for enlarging or reducing the map

• Scalebar



100 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

If you have already set up your servlet container using MapXtreme’s Tomcat installer, 
you can run HTMLEmbeddedMapServlet. Open a browser and type the URL to 
MapXtremeServlet, such as: 

http/localhost:8080/mapxtreme/servlet/htmlmapservlet

Your URL may be different depending on how you set it up. 

If you haven’t configured your servlet container and MapXtreme Java, see “Setting 
Up Your Servlet Container” on page 33 in Chapter 3: Getting Started, for instructions 

and troubleshooting guidelines.

For example, to customize this servlet change the map width or height by modifying 
the appropriate variables in HTMLEmbeddedMapServlet.java and recompiling. 

Whenever you modify and recompile the servlet, you will have to copy its class files 
into the appropriate directory. For example, if you use JRun, copy the .class files into 
the JRun\servlets. If you use JavaWebServer, copy the .class files into 
JavaWebServer\servlets. 

If you compile the samples, be sure to delete, move, or rename 
mxtjsampleservlets30.jar -- otherwise, your servlet container may use the 



MapXtreme Java Edition Developer’s Guide 101

Chapter 7: Writing Your Own Servlets

HTMLEmbeddedMapServlet.class file from the jar file, instead of using the class file 
that you compiled. 

Note, however, that the HTMLEmbeddedMapServlet code sample allows you to 
change many settings without recompiling. The servlet loads many of its settings 
using standard servlet init parameters. For example, the name of the map to load (e.g., 
world.gst) can be overridden using an init parameter; thus, if you simply want to 
change the name of the map to load, you do not have to modify the servlet source 
code at all, you can simply edit the init parameter. 

The following table describes the most important init parameters that are expected by 
the HTMLEmbeddedMapServlet sample. For a complete list of the init parameters 
used by the sample servlet, view the comments in HTMLEmbeddedMapServlet.java.

If you use a servlet container that provides an Administrator tool (such as JRun or 
JavaWebServer), use that tool to set up your initialization parameters, as described 
above.   Some servlet containers might require you to specify init parameters in an 
XML file; the next two sections describe both. 

Editing Init Parameters in Tomcat 
You can modify init parameters for Tomcat by using a text editor to edit a web.xml 
file. The following example shows a <servlet></servlet> block that defines three init 
parameters for HTMLEmbeddedMapServlet -- the mappath, filetoload, and 
mapxtremeurl init parameters. 

Init Parameter Description Example

filetoload The full path to the map file 
that will be displayed (either a 
.gst or .mdf file). 

C:\mxt\maps\world.gst

mappath The path to the directory where 
geoset (.gst) map files are 
installed on the server. Not 
applicable for map definitions.

C:\mxt\maps

mapxtremeurl The MapXtremeServlet URL http://localhost:8080/servlet/
com.mapinfo.mapx-
treme.MapXtremeServlet



102 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

    <servlet>

      <servlet-name>

        htmlmapservlet

      </servlet-name>

      <servlet-class>

        HTMLEmbeddedMapServlet

      </servlet-class>

      <init-param>

        <param-name>

          mappath

        </param-name>

        <param-value>

          C:\mxt\maps

        </param-value>

      </init-param>

      <init-param>

        <param-name>

          filetoload

        </param-name>

        <param-value>

          C:\mxt\maps\world.gst

        </param-value>

      </init-param>

      <init-param>

        <param-name>

          mapxtremeurl

        </param-name>

        <param-value>

          http://hostname/mapxtreme/servlet/mapxtreme1

        </param-value>

      </init-param>

    </servlet>  

1. The /mapxtreme reference at the end is the registered name for com.mapinfo.mapx-
treme.MapXtremeServlet. It is set automatically during Tomcat/MapXtreme integration. 



MapXtreme Java Edition Developer’s Guide 103

Chapter 7: Writing Your Own Servlets

Editing Init Parameters in JavaWebServer 
JavaWebServer provides an administrator utility that simplifies the task of adding or 
modifying init parameters. See also “Setting up MapXtreme with JavaWebServer 2.0” 
on page 39.

1. Run the JavaWebServer administrator (e.g., by browsing the URL http://
localhost:9090/). 

2. Click the Manage button, then click the Servlets button near the top of the 
dialog. 

3. Click on the servlet name (in the list in the left of the dialog, under 
"Configure") for the HTMLEmbeddedMapServlet. 

4. Click on the Properties tab to see a list of all init parameters currently defined 
for this servlet. This list is initially empty. To add an init parameter, click the 
Add button. Then type the init parameter name (such as filetoload) under 
"Name", and type in the value (such as C:\mxt\maps\asia.gst) under the 
Value column. 

JDeveloper 3.x Servlet Wizard
MapXtreme 3.0 includes a "Wizard" for JDeveloper 3.x for Windows, which helps 
JDeveloper users configure a sample servlet. Instead of manually making a copy of 
HTMLEmbeddedMapServlet.java and manually configuring the various values 
inside the file, JDeveloper users can simply run the MapXtreme Map Servlet Wizard. 

Note: The wizard is not available unless you checked the "JDeveloper Addins" check 
box in the MapXtreme Installer. This is for JDeveloper 3.0 or 3.1 for Windows only.

Using the MapXtreme Map Servlet Wizard addin also requires that you launch 
JDeveloper 3.x using a 1.2.2 internal VM. 

Once the Wizard is installed, you can bring up the Wizard either by running 
JDeveloper 3.x, and then: 

• Choose File > New, go to the Web Objects tab, and double-click "MapInfo 
MapXtreme Map Servlet." 

or 

• Choose File > New Project in JDeveloper. Then select "Project containing a 
new..." and select "MapInfo MapXtreme Map Servlet."



104 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

Whichever way you launch the Wizard, it displays a dialog box with various setup 
options (such as letting you choose whether the servlet should generate GIF or JPEG 
images). Choose the options that you want, then click OK.   When you click OK, the 
wizard creates a new .java source code file in your active project. This .java file is 
basically a copy of the HTMLEmbeddedMapServlet sample that is included in the 
sampleapps directory — but it is a copy which has been modified to fit the selections 
you made in the dialog box.  

In the Map Definition To Load field, you can type the full path to a map definition 
(.mdf) file, or the full path to a geoset (.gst) file. 

 At the bottom of the dialog is a menu allowing you to choose which servlet API 
version to use: 2.0, 2.1 (the default), or 2.2. You will need to change this setting to 2.0 if 
you are planning to deploy this servlet to Apache Jserv, because Jserv supports only 
Servlet API version 2.0.



MapXtreme Java Edition Developer’s Guide 105

Chapter 7: Writing Your Own Servlets

Once you have run the Wizard to create a .java source file, you can edit, deploy, and 
run that servlet just as you would do with the regular HTMLEmbeddedMapServlet 
code example, described above. 

Note: When you click OK, the Wizard generates a .java source code file, but you may 
need to make additional changes to your project before the source code will compile. 
Your project properties will need to include a library that references the MapXtreme 
jar files mxtj30.jar, devsup30.jar, mistyles30.jar and xml4j_1_1_16.jar. 

Using the Servlet Utility Library (MapToolkit)
MapXtreme Java provides a library of helper methods for building a servlet. Given a 
MapJ object, the MapToolkit class helps you to construct the common elements of a 
map-enabled web page, such as a Layer Control form. The methods used in the 
sample application HTMLEmbeddedMapServlet are taken from this class. 

Use this class to simplify the development of servlets. The following elements are 
included in the library:

Map Tools - radio buttons that identify map navigation elements (zoom in, zoom out, 
pan)

Zoom box - text field that displays the current map zoom and allows user to type in 
new zoom.

Layer Control - an HTML page that displays the layers in the map and allows the user 
to check or clear settings for selectability, visibility, and autolabeling. 

Scale Bar - a viewable element that shows the scale for the map. 

Map Size Toggle - link to enlarge or reduce the size of the map.

Methods in the Servlet MapToolkit
The MapToolkit provides the following methods. For a complete description of the 
MapToolkit class, see the HTML Reference installed on your machine under 
mapxtremejava\help\devsupport.

 



106 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

Method Description

getHTMLLayerListControl Returns a string representing an HTML page that acts as a 
"layer control dialog."

applyLayerSettings Updates the map to reflect all options selected by the user in 
the Layer Control page.

getHTMLZoomControl Returns a string representing a "zoom control" — a set of 
HTML tags that provide a text field for displaying the 
current map zoom width, and a Submit button to apply any 
new zoom width the user types in.

getHTMLMapToolsControl Returns a string representing a set of radio buttons for 
Zoom In, Zoom Out, and Pan.

getHTMLScaleBar Returns a string representing HTML syntax that defines a 
map scale bar. Specify a certain width, or specify zero and 
the scalebar will be sized to a round number approximately 
1/4 the width of the map image.

getToolNumber Returns an int that represents which tool number 
corresponds to which tool name. 

getStr Returns a string resource from a resource bundle.  



MapXtreme Java Edition Developer’s Guide 107

Chapter 7: Writing Your Own Servlets

Tutorial: Adding Thematic Capabilities to Your Servlet
Once you have successfully run the sample servlet, HTMLEmbeddedMapServlet, you 
might want to customize the servlet to include additional functionality. For example, 
you might want to give the user a way to apply thematic shading to the map.

This tutorial shows you how to add code to HTMLEmbeddedMapServlet to give it 
such thematic shading capabilities. The resulting servlet will display a list of column 
names (Population, IndustrialGrowth, etc.); the user can select a column name and 
click an Apply button to shade the World map according to that column. (Note: This 
exercise uses the world.gst table. If you use a different map, substitute the columns 
accordingly.)

This tutorial not only shows you how to create thematic shading, it can also help you 
to develop a better understanding of how the HTMLEmbeddedMapServlet works. 



108 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

The thematic servlet example was created by making a copy of 
HTMLEmbeddedMapServlet, and adding code. This section explains the code that 
was added to support thematic shading.

 Note:  If you are in a hurry, you do not need to manually perform each of the steps 
described in this tutorial; the end result of the tutorial is provided in the 
sampleapps directory, by the name HTMLThemeServlet.java. 

The tutorial covers the following: 

• Overview of the Thematic Shading Process

• New Constants

• Displaying a List of Column Names

• Processing the Selected Column Name

• Displaying a Legend

• New Methods

Overview 
Before inserting specific lines of code into HTMLEmbeddedMapServlet.java, let's 
summarize how the thematic shading feature will work. 

• The servlet begins just as HTMLEmbeddedMapServlet begins; by generating 
an HTML page. The HTML page contains a form that displays a map image. 
The user has various ways of submitting the form (such as clicking the map to 
zoom in or out). 

• We will add some new HTML tags to the map page, so that the page will also 
display a list of column names such as "Population" and "Unemployment". 
The user will select a column name from the list, then click an "Apply" button, 
to see the World layer shaded according to that column. 

• When the user clicks the Apply button, the form is submitted. The servlet 
processes all form fields that are submitted. In doing so, the servlet will note 
which column name the user selected. 

• If the servlet determines that the user clicked the Apply button to request 
thematic shading, then the servlet will call a new method (setTheme) to create 
that shading. The thematic shading basically color-codes the countries in the 
World table, according to the values in the data column that the user selected 
(e.g., countries with high Population appear in red, countries with low 
population appear in yellow). 

• Once again, the servlet generates an HTML page to display the results. The 
page displays a map, although this time the map's appearance has changed: 
the World layer is now color-coded. Also, the page includes one additional 



MapXtreme Java Edition Developer’s Guide 109

Chapter 7: Writing Your Own Servlets

item: an <img> tag that displays a legend. The legend displays the numerical 
values associated with each color in the color-coded map. 

Note that the servlet will be servicing different "types" of requests: requests for an 
HTML page; requests for an image of the map; and requests for an image of a legend. 
The first time the user goes to the servlet's URL: 

http://localhost:8080/mapxtreme/servlet/theme

the servlet responds by sending down text representing an HTML page (i.e., a 

response of type "text/html"). The HTML page includes a tag that displays an image 
of the map; but the URL for that image tag is actually a servlet URL: 

src="/servlet/theme?reqtype=IMG

When the browser attempts to display the map image, it makes a second request to 
the servlet. This time, the servlet replies by streaming an image down to the client (i.e., 
a response of type "image/gif"). 

If the user has created thematic shading, then the page contains another image tag, for 
an image of the legend. Again, the URL of this image tag is a servlet URL, but this 
servlet URL uses a slightly different format: 

src="/servlet/theme?reqtype=LEGEND

In short, bear in mind that the servlet handles three different types of requests: HTML 
page, map image, and legend image. In other words, once you have added thematic 
shading to the map, the servlet will be called three times whenever the client re-
displays the page. 

With that plan in mind, we can begin adding code to the sample servlet. If you haven't 
already done so, make a copy of HTMLEmbeddedMapServlet.java. You might want 

to give your copy a different name, such as "Theme.java".   

New Constants
Near the top of the file, where constants such as FF_MAP_IMAGE are defined, add 
these constants:

// Constants associated with thematic shading

private static final String FF_THEME_APPLY = 
"themeapply"; 

private static final String FF_THEME_COLUMN = 
"themecolumn"; 



110 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

private static final String FF_THEME_NONE = "(none)";

private static final String TABLE_TO_SHADE = "world.tab";

private static final String LEGEND_TITLE = "World 
Countries"; 

Note that the TABLE_TO_SHADE constant identifies a MapInfo table, world.tab. This 
tutorial will use the World table as an example.  If you want to modify this example to 
use a different table name, change TABLE_TO_SHADE accordingly. (Note, however, 
that other parts of the code reference specific columns in the World table, so you will 
also need to make other changes later on. See the getHTMLColumnChooser method 
defined below.) 

The LEGEND_TITLE string is purely cosmetic; it appears as a title at the top of the 
thematic legend. 

Displaying a List of Column Names
We want to enhance the map page to include a list of column names, such as 
"Unemployment Rate" and "Industrial Growth". To see thematic shading, the user will 
select a column name, then click the Apply button. 

When the page first appears, no shading is displayed, and the default selected item in 
the list is "(none)". 

To add items to the map page, modify the getMapPage method. Near the bottom of 
the getMapPage method, add code to display the list of column names and an Apply 
button. Most of this work is performed by calling the method 
getHTMLColumnChooser, which returns an HTML string that represents both the 
list of columns and the Apply button. 

Beneath the list of column names, we will also add code to display an <img> tag, to 
display a legend for the thematic shading. However, we only display a legend when 
and if the user has actually created a theme.

To display the list of column names, the Apply button, and – conditionally – the 
legend, add the following code to the getMapPage method: 

// Add a list of column names, to let the user choose 
which column

// to use for thematic shading.



MapXtreme Java Edition Developer’s Guide 111

Chapter 7: Writing Your Own Servlets

String colName = 
(String)session.getValue("mapinfo.colname");

sb.append(getHTMLColumnChooser(colName));

// If the user created a theme, then display a legend to 
describe the theme.

if (colName != null && !colName.equals(FF_THEME_NONE)) {

sb.append("<img src=\"" + m_thisServletURL +

"?" + FF_REQUEST_TYPE + "=LEGEND&refresh=" + 
rnd.nextLong() + "\">");

}

Where you place this code depends on where you want the list and the legend to 
appear on your page layout. However, make sure that you place it inside the 
<FORM> </FORM> block. You might insert the code just after the spot where we call 
toolkit.getHTMLMapToolsControl. 

The code for the getHTMLColumnChooser method is provided later in this tutorial.

Processing the Selected Column Name
The servlet has a getFormFieldsHT method, which reads in all submitted form fields, 
performs field validation (e.g., to make sure the user didn't type in an invalid zoom 
width), and stores the results in a Hashtable object. Since we have added new form 
fields (a list of column names), we need to add code to the getFormFieldsHT method, 
so that the Hashtable will also contain the name of the column that the user chose. 

Near the end of the getFormFieldsHT method, add two if blocks of code. The first if 
block tests whether the user clicked the Apply button that accompanies the list of 
column names; if the user did click the Apply button, call ht.put to record the fact that 
the user clicked the Apply button. (Later on, when we need to determine exactly how 
the user submitted the form, we will examine the HT_SUBMIT_BUTTON element of 
the Hashtable.) 

Also add code to save the name of the column the user selected. 



112 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

The code to add (near the end of the getFormFieldsHT) is shown in bold:

if (param != null) {

ht.put(FF_REQUEST_TYPE, param);

}

// Handle case where user clicked on Apply Theme

if (req.getParameter(FF_THEME_APPLY) != null){

ht.put(HT_SUBMIT_BUTTON, FF_THEME_APPLY);

}

// Note which column the user chose

param = req.getParameter(FF_THEME_COLUMN);

if (param != null) {

ht.put(FF_THEME_COLUMN, param);

}

return ht;

Within the sendHTMLResponse method, we test whether the user submitted the 
page by clicking one of the various Submit buttons used in the application. Since we 
have added a new Submit button, add code to sendHTMLResponse to handle the case 
where the user has clicked the Apply button for the list of column names. 

If you detect that the user clicked the Apply button, call session.putValue to save the 
name of the column that the user selected, and then call setTheme to apply the 
thematic shading. The code that you add is shown in bold:

if (strSubmitButton != null) {

if (strSubmitButton.equals(FF_LS_APPLY)) {

// User clicked Apply on Layer Settings page; apply 
changes.

toolkit.applyLayerSettings(myMap);

}

else if (strSubmitButton.equals(FF_THEME_APPLY)) {



MapXtreme Java Edition Developer’s Guide 113

Chapter 7: Writing Your Own Servlets

// User clicked the Apply button to set thematic 
shading

String columnName = 
(String)ht.get(FF_THEME_COLUMN);

if (columnName == null) {

columnName = FF_THEME_NONE;

}

session.putValue("mapinfo.colname", columnName);

setTheme(myMap, TABLE_TO_SHADE, columnName, 
LEGEND_TITLE);

}

// TODO: If you add your own submit buttons to the 
page,

// add an else if block to test for whether the user 
pressed

// your new button, and respond accordingly.

}

Note that we call setTheme even if the user selected the "(none)" item from the list of 
column names. In the case where the user selects "(none)", the setTheme method 
clears the theme from the World layer. 

The code for the setTheme method is provided later in this tutorial.  

Displaying a Legend
When the user adds thematic shading to the map, we want the page to include a 
legend that explains the meaning of the shading. The legend is displayed by including 
an <img> tag in the page. The code for generating the <img> tag was shown above, so 
you have already added it to the servlet: 

sb.append("<img src=\"" + m_thisServletURL +

"?" + FF_REQUEST_TYPE + "=LEGEND&refresh=" + 
rnd.nextLong() + "\">");

Note the format of this image URL. This URL does not reference a static file that exists 
on the server; instead, the resulting URL looks like this: 



114 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

<img src="/servlet/theme?reqtype=LEGEND&refresh=2691486241031874102">

This URL causes the browser to make an additional call back to the servlet. When we 
call the servlet this time, the servlet sees the query parameter "reqtype=LEGEND", 
and accordingly the servlet responds differently, by streaming an image of the legend 
down to the browser. 

Locate the try block near the top of the service method. You will need to add an else if 

block, where you will call a new method called sendImageResponseLegend. The 
code that you add is shown in bold:

try {

if (strRequestType != null&&strRequestType.equals("IMG")) 
{

// This servlet request was a request for a map image.

// Stream an image directly down to the client.

sendImageResponse(res, req);

}

else if (strRequestType != null&& 
strRequestType.equals("LEGEND")) {

// This servlet request was a request for a legend 
image.

// Stream an image directly down to the client.

sendImageResponseLegend(res, req);

}

else {

// This request is a request for an HTML page.

sendHTMLResponse(res, req, ht, strRequestType);

}

}

The code for the sendImageResponseLegend method is provided later in this 
tutorial.  



MapXtreme Java Edition Developer’s Guide 115

Chapter 7: Writing Your Own Servlets

New Methods
We added a setTheme method, which either sets or clears thematic shading.

private void setTheme(

MapJ myMap, String tableName, String columnName, 
String title) {

if (columnName == null || 
columnName.equals(FF_THEME_NONE)) {

Layer lyr = myMap.getLayers().getLayer(tableName);

lyr.getThemeList().removeAll();

} else {

// The user did select a column; continue with the 
theme....

ColumnStatistics colStats;

Vector rBreaks;

int numBreaks = 4;

Vector rends;

RangedTheme rTheme;

ThemeList tlist;

Layer lyr = null;

Rendition rendYellow = new Rendition();

Rendition rendRed = new Rendition();

lyr = myMap.getLayers().getLayer(tableName);

lyr.getThemeList().removeAll();

try {

colStats = 
lyr.fetchColumnStatistics(columnName);

rBreaks = Bucketer.computeDistribution(

numBreaks, colStats, 
Bucketer.DISTRIBUTION_TYPE_EQUAL_COUNT);



116 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

rendYellow.setValue(Rendition.FILL, 
Color.yellow);

rendRed.setValue(Rendition.FILL, Color.red);

rends = 
LinearRenditionSpreader.spread(numBreaks, rendYellow, 
rendRed);

rTheme = new RangedTheme(columnName, rBreaks, 
rends, title);

tlist = lyr.getThemeList();

tlist.add(rTheme);

} catch (Exception e) {

e.printStackTrace();

}

}

}  

We added a getHTMLColumnChooser method, which returns a string of HTML, 
representing a list of column names and a Submit button to create shading for the 
specified column:

private String getHTMLColumnChooser(String columnName) {

StringBuffer sb = new StringBuffer();

sb.append("<HR><P ALIGN=\"LEFT\">Thematic Shading 
Column:<BR>");

sb.append("<SELECT NAME=\"" + FF_THEME_COLUMN + "\" 
SIZE=4>");

String strSelected;

if (columnName == null) {

columnName = FF_THEME_NONE;

}

if (columnName.equals("Pop_1994")) {

strSelected = "SELECTED ";



MapXtreme Java Edition Developer’s Guide 117

Chapter 7: Writing Your Own Servlets

} else {

strSelected = "";

}

sb.append("<OPTION " + strSelected + 
"VALUE=Pop_1994>Population 1994</OPTION>");

if (columnName.equals("Unempl_Rate")) {

strSelected = "SELECTED ";

} else {

strSelected = "";

}

sb.append("<OPTION " + strSelected + 
"VALUE=Unempl_Rate>Unemployment Rate</OPTION>");

if (columnName.equals("Indust_Growth")) {

strSelected = "SELECTED ";

} else {

strSelected = "";

}

sb.append("<OPTION " + strSelected + 
"VALUE=Indust_Growth>Industrial Growth</OPTION>");

if (columnName.equals(FF_THEME_NONE)) {

strSelected = "SELECTED ";

} else {

strSelected = "";

}

sb.append("<OPTION " + strSelected + "VALUE=" + 
FF_THEME_NONE + ">(none)</OPTION>");

sb.append("</SELECT><BR>");

sb.append("<INPUT NAME=\"" + FF_THEME_APPLY + "\" 
TYPE=SUBMIT VALUE=\"Apply Shading\"></p>");

return sb.toString();

} 



118 MapXtreme Java Edition Developer’s Guide

Chapter 7: Writing Your Own Servlets

We added a sendImageResponseLegend method, which streams an image of the 
thematic legend down to the browser.

private void sendImageResponseLegend(

HttpServletResponse res, HttpServletRequest req) {

HttpSession session = req.getSession(true);

MapJ myMap = null;

try {

// Try to retrieve the user's previous MapJ object.

myMap = (MapJ) session.getValue("mapinfo.mapj");

if (myMap == null) {

myMap = initMapJ();

}

} catch (Exception e) {

}

RangedThemeLegend rtl = getRangedThemeLegend(myMap, 
TABLE_TO_SHADE, 0);

if (rtl != null) {

res.setContentType(getMIMEType() );

ServletOutputStream sos = null;

try {

sos = res.getOutputStream();

rtl.toStream(sos, getMIMEType() );

}

catch (Exception e) {

e.printStackTrace();

}

try {

if (sos != null) {

sos.close();

}

} catch (Exception e) {

}

}

}  



MapXtreme Java Edition Developer’s Guide 119

Chapter 7: Writing Your Own Servlets

We also added a getRangedThemeLegend method, which is a simple helper method 
called from sendImageResponseLegend.

private RangedThemeLegend getRangedThemeLegend(

MapJ myMap, String layerName, int legendNumber) {

RangedThemeLegend rtLegend = null;

Layer lyr = myMap.getLayers().getLayer(layerName);

RangedTheme rt = 
(RangedTheme)lyr.getThemeList().elementAt(legendNumber
);

rtLegend = 
(RangedThemeLegend)rt.createDefaultLegend(null);

return rtLegend;

}

The completed servlet is installed in the sampleapps directory, named 
HTMLThemeServlet.java. Note that the page layout for HTMLThemeServlet.java is 
slightly different than the page layout for HTMLEmbeddedMapServlet.java: the 
"Layer Settings" and "Enlarge Map" links are placed underneath the map, rather than 
to the right of the map, to make room for the list of column names. This change is 
purely cosmetic, and so it was not described in detail above. To see the exact code 
used to place the links underneath the map, view the source code for 

HTMLThemeServlet.java.       


