
Chapter

Chapter 4: Planning Your
Application

Planning Your Application

This chapter gives you "food for thought" as you
consider designing and building your MapXtreme
Java application. It begins with a broad
introduction to web-based deployment,
infrastructure requirements and necessary skills,
followed by an overview of MapXtreme Java
components and common configurations.

➤ Web Deployment

➤ Infrastructure
Requirements

➤ Skill Sets

➤ Deployment Options

➤ MapXtreme Java Overview

➤ Configurations

➤ Design Considerations

4

50 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

Web Deployment
Organizations worldwide have deployed mapping applications that give users access
to mapping information, leading to better business decisions. In today’s world, the
web is driving these deployments. The advantages to web-based deployments are
many:

• Reduced cost of ownership: It is cost effective to distribute applications across
the web because it eliminates the need to install components on every
machine that will access the application.

• Scalability: Web systems are served from powerful servers. If the number of
users increases, more servers can be added.

• Access to data and software: Each user of your application accesses the latest
version. You introduce software and data updates to all users at once.

• Security: Since security is centralized, you have more control over how you
want to implement it.

This diagram illustrates a generalized view of a web-deployed mapping application.

On the client side, the user interacts with the mapping application via HTML pages
and/or an applet in his or her browser. The interaction is based on a request/response
scenario. The user makes a request, for example, to zoom in on an area of the map.
That request goes to the web server. A server-side application communicates with the
map server to provide the requested information. The updated map is returned to the
client’s browser embedded in the HTML page or applet. Should any of the data that is

MapXtreme Java Edition Developer’s Guide 51

Chapter 4: Planning Your Application

needed to create the map reside in an RDBMS, calls are made to the database via JDBC
to retrieve the data.

An example of a useful web-based mapping application serves the wireless
telecommunications industry. Frequently, potential customers want to know if their
location is inside or outside the company’s coverage area. By providing coverage
maps embedded in an HTML page that is deployed over the Internet, the telco
company can provide an immediate response to customers in a self-service
framework. The customer can interact with the map by using navigation tools such as
zoom in or pan. Each click is a request that is sent to telco application to regenerate the
map.

Infrastructure Requirements
In general, web-based mapping deployments utilize standard components, including
a server machine running a web server, an application server (may be the same as the
web server), and a database of map data for background maps and custom data
specific to the application.

MapXtreme Java web-based deployments require Java 2 support. Additionally, the
web server must support servlets since the mapping server for MapXtreme Java is
deployed as a servlet. Data for maps can be stored locally or accessed from an RDBMS
via JDBC. The application that you are to build can be in the form of a servlet,
JavaServer Pages, Enterprise JavaBeans or an applet.

Necessary Skill Sets
MapXtreme Java is a product for Java developers experienced in writing servlets and
applets. If you are building an application, skills in creating a Java GUI are also
necessary.

Additionally, since MapXtreme Java is deployed on the web, you should have web
development and HTML expertise available to your project. How much you will need
is dependent on the development tool that you are using.

If you are accessing data in an RDBMS, skills in database usage and administration
are also necessary.

52 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

Finally, because this is a mapping application you are creating, some familiarity with
mapping concepts and/or MapInfo mapping products is helpful. The basics of

mapping is covered in Chapter 5.

Deployment Options
Deployment options for MapXtreme Java can be catagorized into three types. The
illustration below shows a generalized view of these deployments: thin client,
medium client, and thick client. The difference is in how much software and data is
sent to the client.

An overview of each type is presented below, followed by a discussion of the
components that make up MapXtreme Java. Configuration details, including pros and
cons of each, conclude the chapter.

Thin Client
In a thin client deployment, the user interacts with HTML pages in a browser. The
map is typically a GIF image embedded in the HTML. The map request processing
occurs on the server. This is the classic Internet deployment that does not require Java
on the client.

MapXtreme Java Edition Developer’s Guide 53

Chapter 4: Planning Your Application

To build this type of application, you will need to know how to develop the server-
side application that generates the HTML.

Thick Client
A thick client is at the other end of the spectrum. The client downloads a Java applet
that provides a more sophisticated user interface than straight HTML. Additionally,
MapXtreme Java can return vector data instead of a raster image. Because of the

increased download time for the applet, this deployment is better handled on intranet
systems where the client side can be better controlled.

To build this type of application, you will need to know how to build a Java applet

and use JavaBeans.

Medium Client
In between the thin and thick options is the medium client. Like the thick client, the
medium client downloads an applet so the client must support Java. Like the thin
client, the medium client receives a raster image of the map. The applet can give you a
more sophisticated user interface than straight HTML and additional map tools, such
as a marquee selection tool.

To build this type of application, you will need to know how to develop an applet and
a server-side application that interact.

Now that you’ve had a general description of web-based mapping, let’s look in detail
at the specific components of MapXtreme Java. The chapter concludes with a
discussion on MapXtreme Java configurations and design considerations, including
pros and cons for choosing the best one for your needs.

54 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

MapXtreme Java Overview
There are four main components to MapXtreme Java Edition: MapXtremeServlet, the
MapJ object, Data Providers, and Renderers. These components work together to
access geographic data, manipulate it, and provide a map or data to your application.

MapXtremeServlet
The MapXtremeServlet is the mapping server provided in the MapXtreme Java
product. It services three types of client requests:

• requests for map images

• requests for vector map data

• requests for map metadata (e.g. the column names of a Layer in a map).

MapXtremeServlet responds to HTTP POST requests. Currently MapJ objects are the
only clients that are capable of communicating with MapXtremeServlet.

MapXtremeServlet is designed to leverage the capabilities of its parent servlet
container. MapXtremeServlet is stateless, it relies on the client request to fully describe
the state of the map. Image requests are handled within MapXtremeServlet by a
multi-threaded "Renderer server". Similarly, requests for map data are handled by a
multi-threaded "DataProvider server". These factors make MapXtremeServlet highly
scalable when deployed within a parent servlet container

While MapXtremeServlet focuses on fulfilling mapping tasks, its parent servlet
container can handle load balancing, fault tolerance, and security management.
Servlet containers are found in web servers such as Sun's JavaWebServer, and in
application servers such as BEA's WebLogics. Web servers such as Apache's Web
Server or Microsoft IIS do not include a servlet container. In these cases a separate

servlet container plug-in such as JRun or Tomcat must be used.

MapJ Object
The MapJ object manages the state of a map. It maintains a map's center and zoom,
coordinate systems, distance units, and the Layers that collectively comprise the map.
MapJ is the topmost level of MapXtreme's client API.

MapJ objects can be configured to work with different types of Renderers and
DataProviders. In the most typical configuration MapJ is a client of
MapXtremeServlet. MapJ sends requests to a MapXtremeServlet instance and as part

MapXtreme Java Edition Developer’s Guide 55

Chapter 4: Planning Your Application

of the request provides the servlet with its current state. MapJ obtains map images
and data from the servlet.

MapJ can also work stand-alone to directly obtain map data and produce map images.
A strength of MapXtreme's component based design is that MapJ can be configured
with other variations. For instance, MapJ can be configured to access map data via one
or more instances of MapXtremeServlet, but still be responsible for displaying the
map image.

Since MapJ's primary purpose is to maintain map state it has a small memory
footprint. This makes MapJ ideally suited for being deployed in the middle tier of n-
tier architectures. See page 57 for more on deployment configurations.

Renderers
Renderers display map data. There are two types of Renderers: LocalRenderer and
MapXtremeImageRenderer. A LocalRenderer can be created from any Java AWT
Component, and is "local to" or in the same process space as the MapJ object to which
it is associated. It uses DataProviders to directly obtain map Features for each Layer in
a map. The LocalRenderer then draws the Features into its Component's Graphics
object.

A MapXtremeImageRenderer can be created from a URL reference to an instance of
MapXtremeServlet. When MapJ uses a MapXtremeImageRenderer it signifies that it
wants to defer map rendering to an instance of MapXtremeServlet. The servlet

satisfies this request by returning a raster image to the MapJ client. Various raster

formats including GIF, JPEG, and PNG are supported by MapXtremeServlet. Of note,
MapXtremeServlet's "Renderer server" satisfies rendering requests by using instances

of LocalRenderers and exporting images to the desired raster formats.

Data Providers
Data Providers are the key link between your MapJ object and your map data. Each
Layer object which is part of MapJ has its own internal Data Provider. Data Providers
are used to access data sources and return vector data. Data Providers are also
invoked during rendering when MapJ uses a LocalRenderer.

56 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

MapXtreme has Data Providers for accessing the following data sources:

• MapInfo tables

• Oracle8i with Spatial Option

• SpatialWare for Oracle 7.0 or 8.0

• Informix Universal Server SpatialWare DataBlade

• DB2 SpatialWare Extender

• JDBC compatible tables containing longitude and latitude columns

• ESRI Shapefiles

• Raster files

• MapInfo Grid

A MapJ object has two ways of accessing a data source. The first approach is to
directly access the data source.

The second method is to make a request to an instance of MapXtremeServlet to get the
data. MapXtremeServlet will then use a DataProvider from its "Data Provider server"
to directly access the data source. As MapXtremeServlet obtains data from the data
source, it will stream the data back to the client MapJ object. MapXtremeServlet uses
an extremely efficient compression scheme to stream the data. One of its capabilities is
to take into acccount the needed resolution of the data. For instance, when the data is
used for rendering a 640 x 480 image, the data can be transmitted at a much higher
level of granularity than it may be stored.

Each Layer associated with MapJ specifies how it would like to access its underlying
data source through a "Data Provider reference". A LocalDataProviderRef signifies
that data access should occur "local to" or within the process space containing MapJ. A
MapXtremeDataProviderRef denotes that a MapXtremeServlet instance will act as an
intermediary in accessing the data source.

Data Providers are discussed in Chapter 9: Mapping in Layers.

MapXtreme Java Edition Developer’s Guide 57

Chapter 4: Planning Your Application

Configuration Options
Now that you are familiar with MapXtreme's components and had an introduction to
deployment options, let's look at how you can use them to your best mapping
advantage. MapXtreme Java is suited to two- and three-tier web applications. The
difference between them is where the MapJ component is located, on the server or
client.

Three-Tier Configuration
The following illustration shows the most common configuration — a browser as the
client, your business logic which uses MapJ objects in the middle tier,
MapXtremeServlet in the middle tier, and the database in the database tier. Your
application may utilize any combination of servlets, JavaServer Pages, or Enterprise
JavaBeans.

When the client issues a request through the browser, your web server forwards the
request to your application, which in turn, may update the state of a MapJ object. The
MapJ object is then used to communicate a mapping request to MapXtremeServlet. If
the request is for an image, the MapXtremeServlet will return a raster image of the
map to the application. The application can then embed this image within an HTML
page and return the page to the end-user's browser.

58 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

The middle tier application can also leverage MapXtreme's servlet library to aid in
building the HTML page. For instance, there are library methods for creating an
HTML- based layer control.

This three-tier architecture has the following characteristics:

• MapJ is deployed in the middle tier within custom application.

• MapXtremeServlet is deployed in middle tier.

• Java is not required on client. Client can send HTTP requests and can receive
HTML pages as responses.

• Produces minimal network traffic: Applets are not required, so there is no
applet to download. Vector data is not sent to the client, only HTML pages
with embedded raster images. Raster formats such as GIF typically produce
map images that are 15 - 25K in size.

These characteristics make the three-tier architecture ideally suited to Internet
deployments in which you as the Web application developer have little control over
your client’s configuration. This deployment is a "lowest common denominator"
approach and can be used to satisfy clients that do not have Java capable browsers

and/or have low network bandwidth.

Two-Tier Configuration
In a two-tier, or "thick client" configuration MapJ and your business logic are
deployed client-side, typically as an applet within a browser. A main advantage with
this type of deployment is that it allows you to use MapXtreme's JavaBeans.
Applications can be created much more rapidly working with MapXtreme's
JavaBeans in a visual RAD environment than working at the lower level MapJ API.
MapXtreme's JavaBeans provide visual map tools, toolbars, wizards, and map display
components ready for inclusion in your application. Another benefit with thick clients
is the potential for users to interact with local data on their machines.

MapXtreme Java Edition Developer’s Guide 59

Chapter 4: Planning Your Application

In a two-tier deployment, a client will first download an applet containing the
JavaBeans from your Web site. Once the client starts running the applet no further
communication with the Web server is necessary. For instance, the applet may be
configured to access data sources directly and to also perform the map rendering. In
this case, when the applet needs to draw a map, it will fetch the data from the data
source and then do local rendering.

The two-tier architecture has the following characteristics:

• MapJ is deployed client-side.

• MapXtremeServlet may or may not be deployed in the middle tier.

• Java required on client: The client browser must have support for a Java 2
Platform VM (or have a suitable plug-in).

• Heavier network traffic: The applet containing the JavaBeans must be
downloaded. Vector data may be sent to the client and the size of the vector
data is much more variable than the size of raster files.

These characteristics make the two-tier architecture most suited to intranet
deployments in which the deployment environment is more homogenous and
controlled. When the applet is responsible for rendering and data access, a high
network bandwidth is required. More powerful machines may also be required on the
client.

60 MapXtreme Java Edition Developer’s Guide

Chapter 4: Planning Your Application

Two-Tier Hybrid Configuration
Hybrid configurations are also possible. For instance the applet may be configured to
go through a MapXtremeServlet instance to obtain some or all of its data. Using
MapXtremeServlet is recommended if you are accessing an RDBMS. A JDBC driver is
required to access an RDBMS, and these do not work well within an applet. It is much
simpler to keep the JDBC access in the middle tier with MapXtremeServlet and allow
it to stream the data to the applet. Furthermore, the applet can be structured to use

MapXtremeServlet to obtain map images.

Design Considerations
Now that you’ve looked over the configuration options, keep these elements in mind
as you plan your mapping application.

Client Side
• Are you deploying over the Internet or via a corporate intranet?

• What is the network bandwidth?

• Is the client an applet or stand-alone application? Will the client need
additional software or resources, such as JDBC drivers, to run?

• Are you designing your application for a specific platform, for any platform,
or a mixed environment?

• What browser will your users be using? Is Swing support or other browser
plug-ins required?

• How much mapping functionality is needed client-side? How useful are the
JavaBeans such as the AddThemeWizard and LegendContainer for your
needs?

Server-Side
• How complex of an application are you building? Do you have the necessary

hardware?

• How many users do you expect to use your application? What is the peak
user load expected?

• What services do you want or need from a Web server and/or application
server?

• Do you have the appropriate skill sets for the type of application you are
building? It can include Java programming, database administration, web
development, etc.

MapXtreme Java Edition Developer’s Guide 61

Chapter 4: Planning Your Application

• Have you considered any security or network issues?

• What other software will your application need to interact with?

• What version of Java will be used? Do all the components support a common
version?

Whether you decide you need a thin client deployment for map images or thick
applet that provides additional functionality, MapXtreme Java is a flexible
development tool that can help you contruct the web mapping application you need.

The next chapter introduces you to the basics of mapping. Chapters 6 and 7,
MapXtreme JavaBeans and Writing Your Own Servlets, respectively, can help
jumpstart your application development with pre-defined mapping components and
example applications. In Chapters 8-13 we turn our attention to the MapJ API,
including the MapJ object, Layers, Data Providers, Features, Searches, Labeling,
Renditions, and Themes. Chapter 14 covers the Map Definition Manager, the tool for
creating and customizing your background maps.

