
Chapter

Chapter 2: What’s New in
MapXtreme?

What’s New in MapXtreme?

This release of MapXtreme Java offers many new
features and enhancements to better help you
design and build the web mapping application that
best meets your needs.

➤ Java 2 Support

➤ MapXtremeServlet

➤ Installation Conveniences

➤ Insert/Update/Delete for
JDBC DataProviders

➤ Support for Oracle

➤ QueryBuilder

➤ Connection Pooling

➤ Map Definition Management

➤ Theme Management

➤ Renditions

➤ Labeling Enhancements

➤ Selectable Layer Objects

➤ New JavaBeans

➤ Localization

➤ Printing/Plotting Support

➤ Raster and Grid Support

➤ Shape File Support

➤ MapToolkit (Servlet Library)

➤ Sample Applications

➤ Changes Between
MapXtreme Java 2.0.x to 3.0

2

10 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

Java 2 Support
This release of MapXtreme Java requires the Java 2 Platform Standard Edition. This
allows MapXtreme Java to take advantage of advanced graphic display of map
features and labels. We are no longer supporting JDK 1.1.x.

MapXtreme Java can optionally install a 1.22 VM, if you do not already have one.

MapXtremeServlet
MapXtreme Java has changed to a servlet architecture to better service requests for
maps and data. The servlet, called MapXtremeServlet, replaces MapXtremeApp, the
previous stand-alone Java server application. The Server Administrator tool, which
administered MapXtremeApp, has gone away as well.

MapXtremeServlet continues to supply the same mapping services: image requests
(GIF, JPEG), vector data requests (query methods), and metadata requests (table
information, statistical information for columns in a table).

This servlet model requires a web server/servlet container configuration that
supports servlets, such as Apache/Tomcat, Java Web Server, etc. Web servers, such as
Microsoft IIS that do not support servlets directly, require a plug-in such as JRun or
Tomcat.

See Chapter 3: Getting Started, to learn how to set up your servlet container with
MapXtremeServlet.

Installation Conveniences
As a convenience to users, Apache Web Server is available on the CD. The installation
process provides an optional step of integrating Tomcat with Apache and
MapXtreme. Tomcat and Apache is a web server/servlet container that is freely
distributed by the Apache Group. MapXtreme is designed to work with any web
server/servlet container that supports Java 2.

For users of JDeveloper 3.0 for Windows, the installation program will optionally
install a Servlet Wizard Addin to simplify the process of creating and configuring a
custom servlet.

Installation and setup instructions are provided in Chapter 3: Getting Started.

MapXtreme Java Edition Developer’s Guide 11

Chapter 2: What’s New in MapXtreme?

Insert/Update/Delete for JDBC DataProviders
MapXtreme Java 3.0 supports read/write access of data for remote databases. This is
provided through the enhanced JDBC DataProviders in MapXtreme. Layers
representing Oracle8i, IUS, DB2, etc., are now editable. Features can be added and
removed from these data sources using the same methods and techniques that have
been used to edit Annotation layers (addFeatureSet, addFeature, removeFeature,
replaceFeature). See Chapter 11 for more information.

This release also provides for simple transaction support. As a row is updated, it is
locked and then unlocked once the update/insert/delete operation is completed.

Support for Oracle
This release of MapXtreme Java adds support for Oracle 8.1.6, as well as continued
support for 8.1.5. Changes in 8.1.6 include a new format for representing GTYPEs;
nodes are ordered differently than they were in 8.1.5; and a new metadata view,
USER_SDO_GEOM_METADATA that replaces the older SDO_GEOM_METADATA
table.

Drivers
This release supports the Oracle8i Thin, Thick and Thick Bequeth drivers. These ar
JDBC 2.0 drivers provided by Oracle in classes12.zip.

SRID and Oracle 8.1.6
MapXtreme also supports Oracle 8.1.6 use of SRID coordinate system information.
Oracle8i tables containing spatial geometry objects may include a Spatial Reference ID
(SRID) data attribute that defines the coordinate system for the objects in the table.
Queries sent to Oracle8i must now include an SRID if the Oracle data source includes
one. If not, a Null value for the SRID can be passed.

To help you determine the SRID for the data source, MapXtreme provides a utility
class OracleSRID that serves as a lookup table to map Oracle SRID to and from
MapInfo CoordSys.

12 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

QueryBuilder
MapXtreme Java handles user-defined SQL queries without making any
modifications to the query. Referred to as "pass-through" queries, MapXtreme will
execute them as written and retrieve all the features in the layer. Note that this could
return many features, even if the view port is small.

Pass-through queries are intended for power users who need complex queries to
construct layer data and understand how to include the appropriate limiting
conditions.

To assist such users with the limitations posed by "untouched" queries, MapXtreme
Java provides an interface that will allow you to write your own call back objects to
create modified query strings when rendering or performing searches on layers
defined by pass-through queries. QueryBuilder is explained in Chapter 11: Features
and Searches.

Connection Pooling
JDBC connection pooling can now be configured, thus aiding performance and
increasing security by eliminating the need to transmit sensitive connection
information over a network.

Connection pooling logic has been moved into a separate class,
MIConnectionPoolManager. This pool manager is responsible for pre-starting
named JDBC connections that are specified in a miconnections.properties file. This
file must be on the classpath for it to be used by the pool manager. Additional pooled
connections can be created programmatically through the API.

The pool manager maintains a “connection janitor” which runs periodically in a
separate thread to close down unused JDBC connections.

Pooled connections can be created, edited, and deleted from the
miconnections.properties file through a stand-alone program called Connections
Manager (com.mapinfo.dp.util.ConnectionsManager). See Chapter 10: Accessing
Remote Data, for more on connection pooling.

MapXtreme Java Edition Developer’s Guide 13

Chapter 2: What’s New in MapXtreme?

Map Definition Management

XML-based Map Definitions
Map Definitions in MapXtreme Java are now XML-based text files. Previously the
map definitions were stored as serialized Java objects in a binary format. This change
provides better forward compatibility and allows you to edit map definition files if
you choose.

Map Definitions can be saved as a file or stored as a record within a RDBMS table.

With this change to XML-based map definitions, map definitions created in previous
versions of MapXtreme will not work with this release of MapXtreme Java. You will
need to create new map definitions either by using the Map Definition Manager or
programmatically through the new MapDefContainer interface. Additionally, you can
check the MapXtreme website for a 2.0 to 3.0 Map Definition converter
(www.mapxtreme.com).

Saving Map Definitions to a Database
This release of MapXtreme Java extends support for saving map definitions by
allowing you to save and load them from remote databases. Previously, map
definitions could only be saved to a file.

Saving map definitions can be accomplished through Map Definition Manager or
programmatically through the MapDefContainer interface. Both ways allow you to
save the map definition as a file or to a database. When saving to a database, you can
choose to save the information to the default MAPINFO.MAPDEFINITIONS table,
specify a table in the database, or specify a query or insert/update statement that you
want to use to save and load the information.

Coordinate System Chooser
This release now allows you to change the map’s distance units and display

coordinate system in the Map Definition Manager via the Map Options menu.

14 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

Theme Management
MapXtreme Java has added support for two new types of themes: Individual Value
Themes, and Selection Themes.

Individual Value Themes
An Individual Value Theme allows the thematic shading of features based on specific
attribute values for a specified column. For example, use Individual Value theme to
modify the renditions of line features in a "Roads" table based on the values in the
"StreetType" column. Street type values of "Rd" could be blue, while values of "Hwy"
could be shaded red.

Selection Themes
A SelectionTheme can be used to change the rendition of all features in a Layer's
Selection. This type of theme is commonly used to highlight a group of objects
returned from a search method.

AddTheme Wizard Bean
A new AddTheme Wizard Bean is available to walk users through the process of
creating a Ranged theme or Individual Value theme. This Bean can be added to the
MapToolbar Bean for easy access. The theme can be based on any supported column
and layer in the current map. Currently there is support for creating a theme based on
numeric, string and date column data, and on point, line and region layers. Part of the
operation will be to create a default theme legend which is associated with the new
theme.

Themes and Layer Control
The Layer Control Bean has been enhanced to display themes in addition to map
layers. Users can now move themes up or down and remove them from the map.

MapXtreme Java Edition Developer’s Guide 15

Chapter 2: What’s New in MapXtreme?

Legends for Themes and Cartographic Maps
You can now create, display, and manage legends for themes and cartographic
symbols.

Theme legends are look-up keys that are tied directly to a theme. Theme Legends can
be created for Ranged Themes and Individual Value Themes.

Cartographic legends represent features in a map layer.

LegendContainer Bean
As a way of managing how legends are laid out and displayed, MapXtreme Java
includes a LegendContainer Bean that can be dropped in along-side a VisualMapJ
object and display any legends that are associated with VisualMapJ. If the
LegendContainer detects the addition or removal of a legend from VisualMapJ, it
updates its display accordingly.

Renditions
The Rendering engine for MapXtreme Java 3.0 has been re-engineered to better
support the many additional capabilities of the Java2D API as well as allow for future
capabilities. The new engine is capable of displaying complex symbology, line and fill
styles. New features include:

• Symbol paints for lines and regions

• Line markers (symbols that follow a line geometry)

• Dashed lines

• Line caps and joins

• Parallel lines

• Vector symbols

• Enhanced Font symbols

• Alpha compositing, including support for translucent fills.

Some Rendition properties have been changed or replaced in this release of
MapXtreme Java. See Chapter 12: Labeling and Renditions, for details.

16 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

Labeling Enhancements
MapXtreme Java now supports more options than previous releases for enhanced
label appearance and placement. In addition to the previously available bold, italic,
and halo effects, text label options now include outlining, underlining, and boxing.
Labeling can be horizontally and vertically aligned from an anchor position, as well as
offset x and y distances from the anchor point.

In addition to controlling labeling through the API, MapXtreme Java includes a new
label position chooser for the Label dialog.

Selectable Layer Objects
This release of MapXtreme Java adds a fourth characteristic to the behavior of MapJ
Layer objects: selectability. Previously, Layer object properties included visible,
editable, and autolabel.

Now when a (MapJ) Layer is selectable, you can choose an individual Feature or
multiple features and perform additional actions on this subset.

New JavaBeans

Selection MapTools
New Selection MapTool Beans have been added to MapXtreme Java to expand the
functionality of interacting with a map. The following MapTools are new to this
release of MapXtreme Java:

• ObjectSelectionMapTool: use to select individual features when a mouse is
clicked on the Feature.

• BoundarySelectionMapTool: use to select features contained within the
bounding polygon of the unique (region) Feature in the topmost visible Layer
that contains the point of the mouse click.

• RadiusSelectionMapTool: use to select features contained within a bounding
circle formed by a mouse drag operation.

• RectangleSelectionMapTool: use to select features contained within a
bounding rectangle formed by a mouse drag operation.

• PolygonSelectionMapTool: use to select features contained within a
bounding polygon formed by a series of mouse click actions.

MapXtreme Java Edition Developer’s Guide 17

Chapter 2: What’s New in MapXtreme?

AddTheme Bean
As previously mentioned under Theme Management, above, this release of
MapXtreme Java includes an AddTheme Bean, a wizard to allow you to easily add a
Ranged Theme or Individual Value theme to your map.

LegendContainer Bean
Included in this release is a new Bean to display and manage theme and cartographic

legends.

LayerControl Bean
The LayerControl Bean has been updated to display themes and allows them to be re-
ordered or removed from the map display.

From the Layer Control users can add layers by clicking the Add button. This displays
the AddLayer Wizard that guides you through the process. The Wizard is initialized
from the addlayerwizard.properties file that contains information about your data
source.

Localizatio
MapXtreme Java provides localized versions of its JavaBeans, Map Definition
Manager, Connections Manager and installer in the following languages: German,
Spanish, Italian, French, Swedish, Japanese, Korean, Simplified Chinese, and
Traditional Chinese.

Printing/Plotting Support
In this release of MapXtreme Java, Visual MapJ has been enhanced to support printing
and plotting of maps. In Windows the current 1.22 Java VM limits the print device’s
resolution to 72 dpi. On UNIX, MapPrinter will attempt to print to whatever the dpi
for the device is.

Raster and Grid Support
This release includes support for displaying MapInfo continuous grid files. A grid file
is a type of thematic map that displays data as continuous color gradations across the
map. It is produced by an interpolation of point data from the source table and

18 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

displays as a raster image. To create a MapInfo grid file, use MapInfo Professional. For
more on importing raster images, see Chapter 9: Mapping in Layers.

Shape File Support
ESRI Shapefiles are now a supported data source in MapXtreme Java. The Shapefile
Data Provider uses the TableDescHelper and DataProviderHelper interfaces. It is
functionally equivalent to the TAB Data Provider, except that character set encoding

and coordinate system information is not maintained in Shapefiles. It must be passed
to the TableDescHelper.

MapToolkit (Servlet Library)
MapXtreme includes a new class of helper methods for creating custom servlets. For
an example of how these helper methods can be used, see the sample servlet
HTMLEmbeddedMapServlet in the \sampleapps\Java\servlet directory.

Sample Applications
Several sample applications ship with MapXtreme Java. They can be found in
\sampleapps after installation.

Servlet example: HTMLEmbeddedMapServlet.java
A customizable "client servlet" that uses MapXtremeServlet for generating map
images that are viewed in an HTML form. This sample is further discussed in Chapter
3: Getting Started, and Chapter 7: Working With Servlets.

Servlet/AWT Applet example: MapperServlet
A customizable "client servlet" that uses MapXtremeServlet for generating map
images that are viewed in an applet. The applet is AWT-based, with no Swing
requirements, and no plugins or JavaBeans are involved.

Swing Applet example: SimpleMap
An applet that demonstrates using our JavaBeans (VisualMapJ, MapToolbar) to
provide basic map display, map navigation, and theme/legend display using the Add
Theme Wizard and LegendContainer. This applet communicates directly with

MapXtreme Java Edition Developer’s Guide 19

Chapter 2: What’s New in MapXtreme?

MapXtremeServlet. This applet requires the Java 2 platform (or plug-in). This example
is further discussed in Chapter 6: MapXtreme JavaBeans.

HAHTsite 4.0 example: JavaHelloWorld
This Java example demonstrates basic map navigation, use of Layer Control and
display of a scalebar in an HTML form. Server-side, the MapJ object and the business
logic are managed by the HAHTsite Server application (which in turn uses

MapXtremeServlet).

Changes Between MapXtreme Java 2.0.x to 3.0

AppSupportSettingsReader
Version 3.0 no longer supports the AppSupportSettingsReader object. Some version 2
applications used this object as a convenient way of retrieving the "Preferences"
settings that were set through the MapXtreme Administrator's Preferences tab (e.g.
the Maps Directory preference, which stored the directory where map files are
installed).

If you are upgrading a version 2 application that used this object, you will need to
delete any references to this object. For example, instead of reading settings through
calls such as this:

AppSupportSettingsReader reader = new
AppSupportSettingsReader(m_host, m_adminPort);

String serverMapPath = reader.getDefaultMapPath();

You could simply assign the values explicitly:

String serverMapPath = "C:\mapxtreme\maps\";

Or you could read such settings in from a properties file that you set up yourself.

Similarly, you would need to delete any import statements that reference the deleted
object:

import
com.mapinfo.mapxtreme.util.AppSupportSettingsReader;

20 MapXtreme Java Edition Developer’s Guide

Chapter 2: What’s New in MapXtreme?

DataProviderHelper
All DataProviderHelper objects that took verbose, seamed, and cached flags have
been deprecated. DataProviderHelpers for JDBC Layers should be changed over to
use connection pooling.

TableDescHelpers
The constructors for JDBC Layers that took either a table name or SQL statement are

deprecated. Use the newer versions that specify only a table name or SQL statement.
These additionally expose new functionality such as the ability to specify per-Feature
Renditions.

MapXtremeDataProviderRef
The constructors that accepted a host and port to MapXtremeApp will no longer
work. Call a non-deprecated constructor that takes an URL for MapXtremeServlet.

RendererParams
The constructors in version 2 that accepted a host and port to MapXtremeApp will no
longer work. To have VisualMapJ access rendering services from MapXtremeServlet,
call the non-deprecated constructor that takes a MapXtremeServlet URL and image
MIME type.

MapDefParams
The constructors that accepted a host and port to MapXtremeApp will no longer
work. To have VisualMapJ load a map definition or geoset from a MapXtremeServlet,
you will need to use one of MapJ's loadGeoset() or loadMapDefinition() methods
which allow this. (Use VisualMapJ's getMapJ() method to obtain a reference to its
current MapJ.)

Theme Ordering
Themes within a Layer's ThemeList now follow the same ordering as Layer objects
within the Layers collection. Themes at the top of the ThemeList take precedence over
Themes in a lower position. In previous versions Themes at the bottom of the
ThemeList had the higher priority.

MapXtreme Java Edition Developer’s Guide 21

Chapter 2: What’s New in MapXtreme?

Adding Layers
There are new versions of Layers' add and insert methods that take an additional
parameter for the Layer name. This parameter is required for Layers defined by SQL
statements. While optional for Layers defined by table names, it is highly
recommended to always specify a name for JDBC Layers, as this avoids the runtime
overhead involved in determining a name.

Adding/Loading MapDefinitions and Geosets
Methods that accepted a host and port to MapXtremeApp no longer work. To load a
map definition from a remote Web server, use the version of
MapJ.loadMapDefinition that accepts an InputStream. To load a remote geoset use
MapJ.loadGeoset that accepts an input stream, data directory and servlet URL. Use
Layers.addMapDefinition that takes an input stream and Layers.addGeoset that
takes an input stream, data directory, and servlet URL.

Defining JDBC Layers by SQL statements
JDBC Layers defined by SQL have been problematic in the past, as MapXtreme could
not always derive queries for these Layers that produced meaningful or valid SQL.
MapXtreme now allows users working with query-based JDBC Layers to specify the
queries MapXtreme Java should execute. This is done through a QueryBuilder
interface. Use the IdentityQueryBuilder to quickly convert your project to version 3.0
and then customize the QueryBuilder to optimize your performance.

