
Chapter

Chapter 13: Theme Mapping and
Analysis

Theme Mapping and Analysis
Thematic mapping is a powerful way to analyze
and visualize your data. You give graphic form to
your data so that you can see it on a map. Patterns
and trends that are almost impossible to detect in
lists of data reveal themselves clearly when you use
thematic shading to display data on a map.

With MapXtreme, you can create applications with
thematic maps.

➤ What Is Thematic Mapping?

➤ General Objects for Themes

➤ OverrideTheme

➤ RangedTheme

➤ SelectionTheme

➤ IndividualValueTheme

➤ Theme Legends

➤ AddTheme Wizard Bean

13

206 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

What Is Thematic Mapping?
Thematic mapping is the process of shading your map according to a particular
theme. The theme is usually some piece or pieces of your data. You thematically shade
a map using data from a layer. The most commonly known example of a thematic
map is a weather map. When you see red, you know it is hot (high number of
degrees); where you see blue, it is cold (low number of degrees).

Themes represent your data with shades of color, fill patterns, or symbols. There are
many uses for thematic maps to display your data. You create different thematic maps
by assigning these colors, patterns, or symbols to map objects according to specific
values in your data.

Thematic mapping allows you to visualize and highlight trends in data that would be
difficult to see through tabular data. Using the methods in the ThemeList and the
Theme Interface, you can create and define your own thematic shading.

Theme Types
MapXtreme Java Edition offers four types of thematic maps:

• OverrideTheme – changes the rendition of an entire layer

• RangedTheme – groups data into ranges and shading based on range value

• IndividualValueTheme – shades groups of features which share a specific
attribute value

• SelectionTheme – applies a rendition to a user-defined list of selected
features

MapXtreme Java Edition Developer’s Guide 207

Chapter 13: Theme Mapping and Analysis

IDSelectionTheme, a type of theme available in previous releases, has been
deprecated. It has been replaced by IndividualValueTheme and SelectionTheme.

All layers that have thematics use the ThemeList collection, the Theme interface, and
the Rendition object. Each specific theme type may use additional objects. They are
explained in detail later in this chapter.

Themes can be created programmatically or, in the case of RangedTheme and
IndividualValueThemes, through the AddTheme Wizard Bean. Themes can now be
displayed and controlled through the Layer Control.

Theme Legends
MapXtreme Java now can generate legends for Ranged and IndividualValue themes.
The information in the legend is tied directly to the theme. When the theme changes,
the legend is updated. More on theme legends is presented later in this chapter.

AddTheme Wizard
MapXtreme Java provides a wizard to assist you when creating a RangedTheme or
IndividualValueTheme. This wizard is a JavaBean that you can add to the
MapToolbar for easy access. See AddTheme Wizard on page 216.

General Objects for Themes

ThemeList
The ThemeList collection is accessible from the Layer object and contains Theme
objects. The ThemeList collection has methods used to perform operations such as
adding, removing, and reordering Theme object(s) from the collection.

The ThemeList allows several thematic shades to exist for one layer. It is important to
keep the themes ordered correctly so that they display on the map. Themes are
rendered in reverse order, like layers, from the bottom up. For example, if you had
two themes that both changed the fill color of objects, one would obscure the other
when the map is rendered. The theme at the top of the ThemeList takes precedence.

The ThemeList works well for certain situations. For example, if you had a map of the
world and wanted to shade the countries by population and also by literacy rate, the
ThemeList allows this. You could first create a theme to shade by population using a
different fill color for the regions and add that to the ThemeList. You could then create

208 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

a theme to shade by literacy using a hatch pattern for the regions and add that to the
ThemeList.

ThemeList objects are used even if you only have one theme.

Theme
Theme is an interface. The methods of this interface allow you to retrieve the column
on which the theme is based and the theme’s descriptive name. If either the column or

the name do not exist for a particular theme, a null value will be returned.

Rendition
The Rendition object is used throughout MapXtreme. It gives all of the style
characteristics to features. When creating thematic maps, you will use Renditions to
specify the appearance of the objects.

The following sections describe the four types of themes.

OverrideTheme
An OverrideTheme can be used to change the rendition of an entire layer. For
example, if you wanted the world table to display with a red fill pattern and green
line color, you would use an OverrideTheme.

To make an OverrideTheme for a layer, you only need to pass a Rendition object in its
constructor.

// Assume myLayer is a Layer object.

// Assume myRend is a Rendition object.

OverrideTheme myOTheme = new OverrideTheme(myRend,"My
Theme");

myLayer.getThemeList.add(myOTheme);

MapXtreme Java Edition Developer’s Guide 209

Chapter 13: Theme Mapping and Analysis

RangedTheme
A RangedTheme is a more complex type of thematic map. When you create a ranged
thematic map, all features are grouped into ranges and each assigned a rendition for
its corresponding range. For example, you have a table of weather stations for your
television viewing area, and you want to shade the locations according to their
reported snowfall amounts.

With the Ranged map feature, MapXtreme groups the snowfall amounts into ranges.
For instance, all weather stations that received between zero and five inches of
snowfall in the past month are grouped into one range. Stations receiving between
five and 10 inches are in a separate range. Sites that received between 10 and 15 inches
are in a third range, while those stations reporting greater than 15 inch snowfall
amounts are in a fourth range. Each range is referred to as a Bin. Each Bin has an
upper-bound cut-off value.

All records in the layer are assigned to a range and then assigned a rendition based on
that range. For instance the weather stations reporting 15 plus inches of snow ar
shaded red. The other ranges are shaded in lighter shades of red with the last range in
gray (default colors). When you display the map, the colors make it readily apparent
which locations received the most and least snow accumulation.

MapXtreme includes several utility objects that help create a RangedTheme.

ColumnStatistics
A ColumnStatistics object is returned when you use the fetchColumnStatistics
method of the Layer object. The ColumnStatistics object contains information on the
minimum, maximum, mean, and standard deviation of the values in a column. When
you use the fetchColumnStatistics method, you pass the column on which you want
the map shaded. You will not need to use the methods of the ColumnStatistics object
directly to create a RangedTheme. Once the object has been retrieved, it is used in the
Bucketer object to create a vector of breakpoints.

Bucketer
The Bucketer class is responsible for calculating the breakpoints for the Bins in a
RangedTheme. Continuing the snowfall example above, you have four ranges that
represent weather stations receiving 0-5 inches, 5-10 inches, 10-15 inches, and 15
inches or more of annual snowfall. Each of these ranges is a Bin.

210 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

The Bucketer calculates the breakpoints of these Bins using the computeDistribution
methods. These methods all return a vector of breakpoints. Each value in the vector is
an Attribute object. All of the computeDistribution methods pass the number of
ranges and a ColumnStatistics object. You may also pass a Distribution Type and a
RoundOff object.

Distribution Types
DISTRIBUTION_TYPE_EQUAL_COUNT has approximately the same number of
records in each range. If you want the Bucketer to group 100 records into 4 ranges
using equal count, it computes the ranges so that approximately 25 records fall into
each range, depending on the rounding factor you set.

When using equal count (or any other range method), it’s important to watch out for
any extreme data values that might affect your thematic map (in statistics, these
values are referred to as outliers). For example, if you shade according to equal count
with this database:

Ben and Miguel are grouped in the same range (since they have the two lowest
values). This may not produce the results you want since the value for Ben is so much
lower than any of the other values.

DISTRIBUTION_TYPE_EQUAL_RANGES divides records across ranges of equal
size. For example, you have a field in your table with data values ranging from 1 to
100. You want to create a thematic map with four equal size ranges. The Bucketer
produces ranges 1–25, 26–50, 51–75, and 76–100.

Keep in mind that the Bucketer may create ranges with no data records, depending on
the distribution of your data. For example, if you shade the following database
according to Equal Ranges:

John 5000 Andrea 7000

Penny 6000 Kyle 5500

Miguel 4500 Angela 7500

Ben 100 Mark 7000

MapXtreme Java Edition Developer’s Guide 211

Chapter 13: Theme Mapping and Analysis

The Bucketer creates four ranges (1–25, 26–50, 51–75, and 76–100). Notice, however,
that only two of those ranges (1–25 and 76–100) actually contain records.

DISTRIBUTION_TYPE_STANDARD_DEVIATION breaks at the middle range of
the mean of your values, and the ranges above and below the middle range are one
standard deviation above or below the mean.

RoundOff
The RoundOff object is use to create clean breakpoints for ranges. For example, if you
were shading a map with values that ranged from 101 to 397, the range breaks would
be cleaner if the range was 100 to 400. RoundOff can round down the lower end of
your range, and round up the higher end of your range.

LinearRenditionSpreader
An important part of creating a useful thematic map is to represent the values with
renditions that gradually go from one value to another. The example in the
introduction to RangedTheme discussed shading snowfall amounts. One end of the
values was represented with red, and the next range was a lighter red, and so forth.
The spread method of the LinearRenditionSpreader will return a vector of Renditions
that spread the style from one given rendition to another for the number of elements
given. The number of elements should match the number of ranges passed to the
Bucketer object. For example, if you passed a rendition that was a red fill, a rendition
that was a white fill, and the number five, the LinearRenditionSpreader would create
a vector of five renditions with the red fill at the beginning, the white fill at the end,
and an even spread of fill types in between.

John 100 Andrea 90

Penny 6 Kyle 1

Miguel 4 Angela 92

Linda 95 Elroy 89

Ben 10 Mark 10

212 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

Creating a RangedTheme
The following example demonstrates the code for creating a RangedTheme:

Layer lyr=null;
Rendition yellow=new Rendition(), red=new Rendition();
lyr = m_map.getLayers().getLayer("States.tab");

String colName = "Pop_1990";
ColumnStatistics colStats =
lyr.fetchColumnStatistics(colName);

// Set number of breaks for data
int numBreaks=5;

// Compute the distribution of data with 5 breaks and
// Equal Ranges
Vector rBreaks = Bucketer.computeDistribution
(numBreaks,colStats,
Bucketer.DISTRIBUTION_TYPE_EQUAL_RANGES);

// Set up a red and a yellow rendition and then
// spread the colors
yellow.setValue(Rendition.FILL, Color.yellow);
yellow.setValue(Rendition.STROKE_WIDTH, 2);

red.setValue(Rendition.FILL, Color.red);
red.setValue(Rendition.STROKE_WIDTH, 4);

Vector rends = LinearRenditionSpreader.spread
(numBreaks, yellow, red);

// Create Theme object
RangedTheme rTheme = new RangedTheme
(colName, rBreaks, rends, "States by Pop_1990");

// Get ThemeList class object
ThemeList tList=lyr.getThemeList();

// Add theme to Layers themeList
tList.add(rTheme);

A Ranged theme can also be constructed through the AddTheme Wizard. Associated
theme legends can be created, as well. Both are discussed later in this chapter.

MapXtreme Java Edition Developer’s Guide 213

Chapter 13: Theme Mapping and Analysis

SelectionTheme
A SelectionTheme applies a rendition to all features referenced in a selection object.
This type of theme is commonly used to store features returned by a search method on
a layer using add(FeatureSet fs). SelectionTheme replaces the deprecated
IDSelectionTheme.

For example, given a Layer object and X and Y coordinates, the code below
demonstrates the selection of the layer's feature(s) at the specified location, and the
creation of a SelectionTheme to display the selected features in red.

void selectFeatureAtPoint(Layer layer, double x, double
y) {

 Vector v = new Vector();

 DoublePoint dp = new DoublePoint(x, y);

 FeatureSet fs = null;

 try {

 // Select a feature at the specified location

 fs = layer.searchAtPoint(v, dp, null);

 // Create a SelectionTheme

 SelectionTheme selTheme = new
SelectionTheme("PointSelection");

 // Create a Selection object, and add the selected
features

 Selection sel = new Selection();

 sel.add(fs);

 // Assign the Selection object to the SelectionTheme

 selTheme.setSelection(sel);

 // Assign the display style of the SelectionTheme

 Rendition rend = new Rendition();

 rend.setValue(Rendition.FILL, Color.red);

 selTheme.setRendition(rend);

 // Add the SelectionTheme to the layer's list of
themes

 layer.getThemeList().add(selTheme);

 }

 catch (Exception e) {

 }

}

214 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

IndividualValueTheme
This type of theme allows the thematic shading of features based on specific attribute
values for a specified column. For example, use Individual Value theme to modify the
renditions of region features in a "Coverage" table based on the values in the
"Territories" column. Territories with type values of "SouthWest" could be red, while
values of "SouthEast" could be shaded blue.

To create an IndividualValueTheme, follow this code sample:

lyr = lyrs.add(dpr, ttdh, "Territories");

IndividualValueTheme iValThm = new
IndividualValueTheme("CoverageTerritory");
Rendition rend=new Rendition();

rend.setValue(Rendition.FILL, Color.red);
iValThm.add(new Attribute("SouthWest"), rend);

rend.setValue(Rendition.FILL, Color.blue);
iValThm.add(new Attribute("SouthEast"), rend);

rend.setValue(Rendition.FILL, Color.green);
iValThm.add(new Attribute("Central"), rend);

lyr.getThemeList().add(iValThm);

An IndividualValueTheme can also be constructed through the AddTheme Wizard.
Associated theme legends can be created, as well. See AddTheme Wizard and Theme
Legends sections, below.

The IndividualValueTheme and the SelectionTheme replace the deprecated
IDSelectionTheme.

MapXtreme Java Edition Developer’s Guide 215

Chapter 13: Theme Mapping and Analysis

Theme Legends
You can create a legend for your Ranged or Individual Value theme based on the data.
You have a lot of control over how the legend will look. You can change the title, fonts,
and insets, as well as modify the descriptive text and colors.

Legends can be used on the client or server to export the legend as an image (e.g., GIF,
JPEG). Theme legends are Swing components and can be used with MapXtreme’s
JavaBeans.

To enable theme legends, the Theme interface has been enhanced to support a theme’s
Legend object. Every Theme will have an associated ThemeLegend object, which will
initially be null. Only RangedThemes and IndividualValueThemes have legends that
contain meaningful information. (The other theme types, OverrideThemes and
SelectionThemes, return empty legends.) To set the legend associated with a Theme,
the Theme object's setLegend(ThemeLegend) method must be invoked. A
ThemeLegend can be obtained by creating one explicitly, or via the Theme's
createDefaultLegend() method.

The following example demonstrates the code for creating a RangedThemeLegend:

// Create Theme object

rTheme = new RangedTheme(colName, rBreaks, rends, "States
by Pop_1990");

// Create a default legend

RangedThemeLegend rThmLeg =
rTheme.createDefaultLegend(null);

// OR, Create a theme legend instance using theme and
setting hashtable

// Add theme settings to hashtable

Hashtable ht = new Hashtable();

ht.put("geomtype",
RangedThemeLegend.REGION_GEOMETRY);

ht.put("lableorder",
RangedThemeLegend.ORDER_ASCENDING);

RangedThemeLegend rThmLeg = new
RangedThemeLegend(rTheme, ht);

// Set legend title

rThmLeg.setTitle("Ranged Theme legend");

// send legend to image file

rThmLeg.toFile("c:\\temp\\rangeLeg.gif", "image/gif");

216 MapXtreme Java Edition Developer’s Guide

Chapter 13: Theme Mapping and Analysis

The LegendContainerBean manages how legends are laid out and displayed. It can be
dropped in along-side a VisualMapJ object and display any legends that are added to
the VisualMapJ maps. VisualMapJ notifies the LegendContainerBean when a theme
changes and the LegendContainerBean updates its display accordingly.

The LegendContainerBean is demonstrated in the sample applet, SimpleMap. See
Chapter 6: MapXtreme JavaBeans for more information.

AddTheme Wizard Bean
The AddTheme Wizard Bean is a guided tool to allow you to easily add a
RangedTheme or IndividualValueTheme to your map. The theme can be based on any
supported column and layer in the current map. Currently there is support for
creating a theme based on numeric, string and date column data, and on point, line
and region layers. Part of the operation will be to create a default theme legend which
is associated with the new theme.

Through the Wizard you can choose a name for the theme. For RangedThemes, you
can also choose the number of ranges (bins), distribution method (equal count, equal
ranges, etc.), and the value that all break-points (bin upper-bound values) should be
rounded to. You can also specify the rendition (style) of the points, lines, or regions
that will be thematically shaded by setting the rendition for the first and last ranges.
Appropriate renditions will then be computed for the ranges in between.

MapXtreme Java Edition Developer’s Guide 217

Chapter 13: Theme Mapping and Analysis

For IndividualValueThemes, you can choose which values in a layer should be given a
distinct shading to distinguish them from other values.

At run-time the AddTheme Wizard Bean hooks up to an existing VisualMapJ instance.
In order for this to work, VisualMapJ must be a child of the component that the
AddTheme Bean was added to. For example, if the AddTheme Bean is added to a
JPanel to which a VisualMapJ instance was already added, then the VisualMapJ
instance will be found and hooked up. If the automated hookup cannot occur, then
you must use the setVisualMapJ(VisualMapJ) method of the AddTheme Bean to seed
the Bean with a working instance of VisualMapJ.

The AddTheme Wizard Bean extends AbstractAction, so it can be added to a JMenu
or JToolbar. This keeps the menu and toolbar in synch. When the menu item or toolbar
button is clicked, the AddTheme Wizard displays.

The AddTheme Bean is demonstrated in the sample applet, SimpleMap. See page 83
for more information.

