
Chapter

Chapter 11: Features and
Searches

Features and Searches
A point on a map representing New York City is an
example of a Feature object. The search methods of
the Layer object allow you to “mark” or choose
Features that meet certain criteria. For example, you
need to find all of the potential clients within 150
miles of New York City. Once you create this
collection of data, you may cycle through the
collected data, print it out, take averages, count
how many met that criteria, save them to a file, or
perform other tasks. In this chapter we will take a
look at Features and searches.

➤ The Feature Object

➤ Creating Features Using
FeatureFactory

➤ FeatureSet Collection

➤ Searching

➤ Search Methods

➤ Searching Layers Defined
by SQL Queries

➤ Feature Editing

➤ Editing an Annotation Layer

➤ Editing a JDBC Table Layer

11

164 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

The Feature Object
A map Feature is a geographic object on a map such as a point, line, or region. For
example, a map of the World could contain regions as countries, lines as highways,
and points as cities. In MapXtreme, a map Feature is represented as a Feature object.
For example, the UK could be a Feature object of type region, the A10 highway a
Feature object of type line, and London a Feature object of type point.

Anyone who has worked with databases is familiar with a record. A record is set of
related columns of information. For example, a database of customers will have a
record for each customer that includes columns for name, address, interest, etc. A
Feature is simply a record that combines tabular data and geometric information. For
example, the file World.tab from the MapXtreme sample data is a MapInfo format
database. For each country, there is a record. Each record includes several columns of
tabular data as well as a reference to the geometric information that describes the
shape and location of each country; this allows it to be displayed on the map. The
tabular data is referred to as attribute data and the geometric data is referred to as the
geometry. These two types of data make a Feature. The following illustration is a
conceptual view of a Feature:

Country Capital Pop_1994 Gr_Rt Pop_Male Geometry

China Beijing 1,136,429,638 2.2 584,836,207

Mexico Mexico City 81,249,645 2.2 39,893,969

United
States

Washington,
D.C.

257,907,937 0.8 125,897,610

MapXtreme Java Edition Developer’s Guide 165

Chapter 11: Features and Searches

Methods of the Feature Object
The Feature object has methods that obtain information about the tabular and
geometric data. The following table lists these methods:

Attributes
Each Feature can have one or more Attribute objects. Attribute objects represent a
column of tabular data for the Feature. This object consists of the type and value of
information. For example, an attribute may have a type of double and a value of 2.2
that represents growth rate.

Geometries
Each Feature can have a Geometry object. The Geometry object allows access to all of
the geometric information for the Feature. The geometric information may be
VectorGeometry or PointGeometry. The VectorGeometry is used for Features that ar
polylines or regions. The PointGeometry is used for points.

Renditions
Each Feature can have a Rendition object. The Rendition object describes the display
characteristics of the Feature. The Feature object can only get existing rendition
information. It tells you how the Feature is being displayed. To change rendition

Method Description

getAttribute Gets the specified attribute given the column index.

getAttributeCount Gets the number of attributes associated with this Feature.

getGeometry Gets the associated Geometry or null if the Feature has no
geometry.

getPrimaryKey Gets a PrimaryKey object (unique ID) for this Feature. A null
value will be returned if the Feature does not have a
PrimaryKey.

getRaster Will return the raster object associated with the Feature if one
exists or null if the Feature does not have a Raster.

getRendition Returns the rendition for this Feature. A null value will be
returned if there is no rendition for the Feature.

166 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

information for existing Features, you should use a theme, such as the
OverrideTheme object.

Raster
Each Feature can have an MIRaster object. When a raster image is associated with a
Feature, you can retrieve binary information that describes an image. When an object
has a raster, it may also have a geometry in which case the geometry describes the
bounds of the raster image.

Creating Features Using FeatureFactory
MapXtreme allows you to create, modify, or delete Features (points, lines, polylines,
regions) and add them to an Annotation layer or JDBC layer. There are two ways to
create new map Features. You can create a Feature using the FeatureFactory object, or
create Features by retrieving existing Features using search methods of the Layer
class. Once the Feature is created or retrieved, it is typically added to an Annotation
layer or layer defined by a table in a JDBC database in order to be useful.

This section covers creating Features using the FeatureFactory. It is followed by a
section on search methods that return Features in a FeatureSet. The chapter concludes
with a section on editing Features.

FeatureFactory Methods
The methods of the FeatureFactory object let you create new map Features that
represent points, lines, polylines, and regions. They are:

• createPoint

• createPolyline

• createRegion

• createCircularRegion

These methods return stand-alone Feature objects. To create any Feature through the
FeatureFactory you specify a Rendition, an array of Attributes associated with that
Feature, the Geometry for the Feature, and the PrimaryKey

When creating a Feature to be added to a JDBC table layer, the Feature will ultimately
be stored as a row in the database table. The array of Attributes provided to the
FeatureFactory are the column values for this new row. These values must match the
ordering of the column names retrieved from the layer's TableInfo.

MapXtreme Java Edition Developer’s Guide 167

Chapter 11: Features and Searches

The Geometry for the Feature must be specified in the numeric coordinate system of
MapJ. If the new Feature is being added to a JDBC table layer that has a different
coordinate system, MapXtreme Java will handle any coordinate transformation that is
required.

To create a point, specify the centerpoint, its Rendition, such as symbol size, font and
color, and array of Attributes.

For describing the geometry of a circle, in addition to specifying rendition and
attributes, you have additional parameters including resolution, and whether the
circle is described using display or numeric coordinates. The resolution defines the
number of nodes to use when making the approximating polygon and the first
parameter controls whether the Feature is a display or numeric circle. The circle is
either drawn in the coordsys of the screen (display) or of the map (numeric). The
display version will generally look better (i.e., more like a circle) on the screen,
whereas the numeric one may appear oblong since it is following the earth’s curve.

Creating a region or polyline involves creating a double point array to describe the
geometry.

Code Example
This example illustrates how to create each of the Feature types in the FeatureFactory:
points, circles, lines, and polylines. To create a region, follow the polyline example to
create an array of points that gets passed to createRegion().

// Get Feature Factory reference

FeatureFactory ff = map.getFeatureFactory();

// Set up Attribute object

Attribute Att[] = new Attribute[1];

Att[0] = new Attribute("Feature1");

// Set up rendition object

Rendition rend = new Rendition();

// For circles and regions, specify the edge and fill
color.

rend.setValue(Rendition.STROKE, Color.cyan);

168 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

rend.setValue(Rendition.FILL, Color.green);

// For points, specify the symbol size, font, and color

rend.setValue(Rendition.SYMBOL_STRING, 52);

rend.setValue(Rendition.FONT_FAMILY, "MapInfo Shields");

rend.setValue(Rendition.SYMBOL_FOREGROUND, Color.green);

// For lines, specify the line color and width

rend.setValue(Rendition.STROKE, Color.cyan);

rend.setValue(Rendition.STROKE_WIDTH, 4);

// Set the center point Features

DoublePoint dp = new DoublePoint(-104, 45);

// Create Circular region

int circType=1;

int circRadius=25;

int circResolution=25;

Feature retFeature;

retFeature = ff.createCircularRegion(circType, dp,
circRadius, LinearUnit.mile,circResolution, rend, Att,
null);

// Create Point

retFeature = ff.createPoint(dp, rend, Att, null);

// Create PolyLine (or Region)

double pts[] = new double[6];

pts[0] = new double(-104); //x1

pts[1] = new double(45); //y1

pts[2] = new double(-102); //x2

pts[3] = new double(46); //y2

pts[4] = new double(-100); //x3

pts[5] = new double(45); //y3

retFeature = ff.createPolyLine(pts, rend, Att, null);

MapXtreme Java Edition Developer’s Guide 169

Chapter 11: Features and Searches

FeatureSet Collection
A FeatureSet is a collection of Features. In MapXtreme, the different layers that make
up your map usually have the same Feature type within each layer. For example, the
“World” layer has region Features to represent each country, the “US Highways”
layer has line Features to represent major U.S. highways, and the “World Capitals”
layer has point Features to represent each country’s capital city. The search methods of
the Layer object return a FeatureSet collection from a layer. The following methods

allow you to manipulate the FeatureSet object:

In order to minimize memory allocations, MapXtreme Java may reuse the same
internal memory when returning a Feature from the getNextFeature method. If you
need to hold on to all or parts of a Feature beyond the next call to getNextFeature,
make your own copy of the object(s) you would like to persist. This means that
FeatureSets can only be traversed in a forward direction, and that once you pass a
Feature you cannot return to it.

Some FeatureSets may be rewindable, which means that the FeatureSet can be reset to
its first Feature. Whether a FeatureSet returned from a search method is rewindable is
an implementation detail of each Data Provider. If a FeatureSet is not rewindable you
can create a rewindable FeatureSet from a non-rewindable one, then the FeatureSet
can once again be traversed.

Method Description

dispose Disposes the resources used by the FeatureSet. This must be
called once you are done with the FeatureSet.

getNextFeature Gets the next Feature in the set.

getRendition Gets the base Rendition for all Features in this FeatureSet.

getTableInfo Gets the TableInfo (metadata) describing this FeatureSet.

isRewindable Determines the rewindable status for this object.

rewind Rewinds the FeatureSet prior to the first Feature in the
FeatureSet.

170 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

Here is an example of rewinding a FeatureSet:

If(!fs.isRewindable())

{

fs = new RewindableFeatureSet(fs);

}

When you are done using FeatureSets the dispose method should always be called.

Searching
One of the most powerful capabilities of MapXtreme is searching. Searching allows
you to retrieve specific data according to geographic information. For example, if you
were looking for all of the cellular towers within a 25 mile radius, you would perform
a search. Searches are methods of the Layer object. They return FeatureSet objects. A
fundamental function of MapXtreme is selecting Features on the map, so that you can
perform additional tasks on them. Users can click on the map to select one or more
Features (points, lines, regions, etc.). Search results are often interpreted as selections.

The following methods of the Layer object provide various ways to search a Layer
and return a FeatureSet collection.

• searchAll

• searchWithinRadius

• searchWithinRegion

• searchWithinRectangle

• searchAtPoint

• searchByAttribute

• searchByPrimaryKey

All searches are passed the names and query parameters of the columns to be
returned. The names of the columns you want returned from any search should be
put into a vector object.

MapXtreme Java Edition Developer’s Guide 171

Chapter 11: Features and Searches

The following is an example of creating a vector of column names for all columns in
the specified table:

//Assume myLayer is a Layer object.

TableInfo myTableInfo = myLayer.getTableInfo();

Vector columnNames = new Vector();

int columnCount = myTableInfo.getColumnCount();

String col;

for (int j=0; j<columnCount; j++)

{

col = myTableInfo.getColumnName(j);

columnNames.addElement(col);

}

The characteristics of the Features returned from a search on a Layer depend on
several optional parameters. By default, a Feature's associated Geometry, Rendition,
PrimaryKey, preferred label position, and raster data are returned with any query. If
you wish to limit the information that is returned for a Feature, use the QueryParams
class. This will improve query performance.

The QueryParams class also specifies the SearchType for the query. The Features
returned from a query are dependent on the search type specified as part of the query.
Queries using a search type of mbr return Features whose minimum bounding
rectangle intersects the search region. This search type is least restrictive and returns
the maximum number of Features. Queries using a search type of partial return
Features that intersect the search region. Queries using a search type of entire return
Features that are completely contained within the search region. It is the most
restrictive search type. If you don’t use QueryParams, the SearchType defaults to mbr.

The following is an example of creating a QueryParams object:

QueryParams qp = new

QueryParams(bGeometry,bRendition,bPrimarykey,bLabelPoint,

bRasterInfo,SearchType.entire);

172 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

This example shows how the QueryParams object limits the information returned in a
search:

// find all Features entirely within a given

// search region, return a single Attribute column

// and no Rendition information

Vector cols = new Vector();

cols.addElement(“County”);

Feature searchFeature // =
mapj.getFeatureFactory().createRegion(points, rend,
attribs,null);

QueryParams queryParams = new QueryParams(true, false,
true,true, true, SearchType.entire);

FeatureSet fs = layer.searchWithinRegion(cols,
searchFeature.getGeometry(), queryParams);

Search Methods
This section defines each search method available and code to demonstrate its use.

searchAll
Returns a FeatureSet collection with all Features from the layer. Use this search if your
application requires you to loop through an entire layer.

//Assume columnNames is a vector of the columns to be
returned.

//Assume qp is the QueryParams object.

//Assume myLayer is a Layer object.

try

{

FeatureSet = myLayer.searchAll(columnNames,qp);

}

catch(exception e)

{

e.printStackTrace();

}

MapXtreme Java Edition Developer’s Guide 173

Chapter 11: Features and Searches

searchWithinRadius
Returns a FeatureSet collection made up of Features within a specified distance of a
point object. This search can be used to locate the nearest dealer to a given location, or
it could return the number of customers within a certain radius of a store.

//Assume columnNames is a vector of the desired columns
to

//be returned.

//Assume qp is the QueryParams object.

//Assume myLayer is a Layer object.

DoublePoint dblPt = new DoublePoint(-
73.889444,42.765555);

double dRadius = 10.03;

try

{

 FeatureSet = myLayer.searchWithinRadius

(columnNames,dblPt,dRadius,LinearUnit.mile,qp);

}

catch(exception e)

{

e.printStackTrace();

}

174 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

searchWithinRegion
This search method returns a FeatureSet collection made up of Features within the
geometry of a Feature. Use this method to return the number of customers in a
specific region, such as postal code, or return the Features that fall within a region
created with the FeatureFactory.

private boolean layerSearchWithinRegion()

{

 //Assume columnNames is a vector of the columns to be
returned.

 //Assume qp is the QueryParams object.

 //Assume myLayer is a Layer object.

 //Assume vGeom is a VectorGeometry of TYPE_REGION

 try

{

 fs =
myLayer.searchWithinRegion(columnNames,vGeom,qp);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 return false;

}

 return true;

}

MapXtreme Java Edition Developer’s Guide 175

Chapter 11: Features and Searches

searchWithinRectangle
This search method returns a FeatureSet collection within bounds of specified
rectangle. This method could be used to search within the given map window or to
pretest a zoom level to see if it will incorporate certain points of interest.

 //Assume columnNames is a vector of the columns to be
returned.

 //Assume qp is the QueryParams object.

 //Assume myLayer is a Layer object.

DoubleRect dRect = new DoubleRect(-74.092662,42.765555,-
73.668898,42.856420);

try

{

 FeatureSet =

myLayer.searchWithinRectangle(columnNames,dRect,qp);

}

catch(exception e)

{

 e.printStackTrace();

}

176 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

searchAtPoint
This search method returns a FeatureSet collection that is made up of Features at a
specified point. This method could be used to test for all objects intersecting a certain
point. It could be used to test if a given location falls within a certain coverage area.

//Assume columnNames is a vector of the columns to be
returned.

//Assume qp is the QueryParams object.

//Assume myLayer is a Layer object.

DoublePoint dp = new DoublePoint(12.3456,-67.890)

try

{

 FeatureSet = Layer.searchAtPoint(columnNames,dp,qp);

}

catch(exception e)

{

 e.printStackTrace();

}

MapXtreme Java Edition Developer’s Guide 177

Chapter 11: Features and Searches

searchByAttribute
This search method returns a FeatureSet collection whose Attribute matches the given
attribute. This method could be used to select all Features with a common piece of
attribute information. For example if you had a table of world countries that included
a column of currency type, you could do a searchByAttribute to return all of the
countries that use the Euro.

//Assume columnNames is a vector of the columns to be
returned.

//Assume qp is the QueryParams object.

//Assume myLayer is a Layer object.

//Assume attr is the attribute that to search against.

//Assume colName is the column to search against.

try

{

 FeatureSet fs =

myLayer.searchByAttribute(columnNames,colName,attr,qp)
;

}

catch(Exception e)

{

 e.printStackTrace();

 return false;

}

178 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

searchByPrimaryKey
This search method returns a FeatureSet Collection with PrimaryKeys that match the
PrimaryKeys in a given array of PrimaryKeys. Use this search if you have previously
returned a FeatureSet. If you want to use the information in the future, but not want to
hold onto the entire FeatureSet, you can just store the PrimaryKey. When you want
the same FeatureSet back, use the searchByPrimaryKey method.

private boolean layerSearchByPrimaryKey()

{

 // Assume columnNames is a vector of the columns to be
returned.

 // Assume qp is the QueryParams object.

 // Assume myLayer is a Layer object.

 // Assume attr is the attribute that to search against.

 // Assume colName is the column to search against.

 // Assume pk is a PrimaryKey from a previous search.

 PrimaryKey[] arraypk = new PrimaryKey[1];

 arraypk[0] = pk;

 try

 {

 FeatureSet fs =
lyr.searchByPrimaryKey(columnNames,arraypk,qp);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 return false;

 }

 return true;

 }

}

MapXtreme Java Edition Developer’s Guide 179

Chapter 11: Features and Searches

Searching Layers Defined by SQL Queries
MapXtreme Java executes user-defined SQL queries without making any
modifications to the query. Referred to as "pass-through" queries, MapXtreme will
execute them as written and retrieve all the Features into the layer. Note that the
query could return many undisplayed Features, for example, when zoomed in on a
densely featured layer.

Pass-through queries are intended for advanced users of MapXtreme Java who need
complex queries to construct layer data and understand how to include the
appropriate limiting conditions.

QueryBuilder Interface
To assist power users with the limitations posed by pass-through queries, MapXtreme
Java provides an interface that allows you to write your own call back objects to create
modified query strings when rendering or performing searches on layers defined by
pass-through queries. A QueryBuilder object is given to a pass-through layer, which
invokes its methods when needed.

During map rendering, if MapXtreme Java encounters a layer defined by a pass-
through query containing a QueryBuilder, the QueryBuilder method
queryInRectangle is invoked to provide the query string that is passed to the
Renderer. The QueryBuilder is provided with all the data needed to construct a new
query string that contains the limiting geometric condition that limits the Features
returned to only those visible in the display viewport. If that layer does not have a
QueryBuilder, it will likely cause significant inefficiency when rendering it as many
more Features may be returned than are displayed. (You can determine the number of
Features returned that were not rendered by running your application with verbose
turned on.)

Searching a pass-through layer by invoking any of the search methods requires the
query to be modified by adding a where clause and/or changing columns in a select
clause. Each search method invokes its counterpart method on the QueryBuilder
interface and uses the new query string to perform the search. Without the
QueryBuilder, a pass-through layer search will throw an exception. A QueryBuilder is
required for searchWithin, searchAt, and searchBy. Only searchAll method does not
require a QueryBuilder.

180 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

To set the QueryBuilder on a layer object, follow this example:

Layer.setQueryBuilder(QueryBuilder myQB);

QueryBuilder Considerations
• The QueryBuilder interface is a power user Feature and should only be used

when the table definition of a layer is not sufficient.

• QueryBuilder references are not stored with the Map Definition. They must
be restored after the Map Definition is loaded.

• The QueryBuilder interface can only be used in client-side applications.
QueryBuilder objects are not sent to the server.

• You can use the same QueryBuilder reference for more than one layer.

• Queries returned from a QueryBuilder are executed exactly the same as all
pass-through queries.

• Using a QueryBuilder does not change any data that defines the layer. The
returned query is executed once and discarded; it does not replace the
original query from the TableDescHelper that was used to construct the Layer
object.

• The data returned by the QueryBuilder query must have the same primary
key definition, dimension, coordinate system, and spatial column (if any) as
originally identified in the TableDescHelper. (This is a limitation on the
QueryBuilder that will be relaxed in later releases.)

Example Code
Provided in the \sampleapps\QueryBuilders directory of MapXtreme Java is an
implementation of OracleQueryBuilder that Oracle users can use as a starting point.

You will also find in sample code for IdentityQueryBuilder, which returns the original
input query unchanged. This is useful as a base class for new QueryBuilder
development.

The following code is a portion of the OracleQueryBuilder sample that shows one
way to construct a query for a query at point. Depending on the purpose of the search
and the geometry in the layer, you may want to change the search geometry to a small
rectangle, circle or region. For example, if the search geometry is a small rectangle, the
mouse click does not have to fall exactly on the Feature, but within the rectangle in
order to select it.

MapXtreme Java Edition Developer’s Guide 181

Chapter 11: Features and Searches

// Construct a query string to be used when executing a
query at point.

// @return The SpatialQueryDef defining the new query and
its metadata

public SpatialQueryDef queryAtPoint(MapJ mapj, Layer
layer, SpatialQueryDef queryDef, String[] columnNames,
QueryParams queryParams, DoublePoint point)

throws Exception {

//build SELECT clause

TreeSet selectCols = findRequiredColumns(queryDef,
columnNames, queryParams);

String selectClause = buildSelectClause(selectCols);

//get SRID

String srid = "NULL";

if (m_bUseSRID) {

int id =
OracleSRID.getSRIDFromCS(queryDef.getSpatialQueryMetaD
ata().getCoordSys());

srid = String.valueOf(id);

}

//build WHERE clause

String spatialColumn =
queryDef.getSpatialQueryMetaData().getGeometryColumn()
;

StringBuffer whereClause = new StringBuffer();

whereClause.append("WHERE MDSYS.SDO_RELATE(" +
spatialColumn + ", MDSYS.SDO_GEOMETRY(1, " + srid + ",
MDSYS.SDO_POINT_TYPE(0, 0, NULL),
MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
MDSYS.SDO_ORDINATE_ARRAY(" + point.x + ", " + point.y
+ ")), 'mask=ANYINTERACT querytype=WINDOW') =
'TRUE'");

//construct final query

StringBuffer newQuery = new StringBuffer();

182 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

newQuery.append(selectClause + " FROM (" +
queryDef.getQuery() + ") " + whereClause);

SpatialQueryDef result = new
SpatialQueryDef(newQuery.toString(), m_outMetaData);

 if(layer.isVerbose()) {

System.out.println("QueryBuilder new queryAtPoint: " +
newQuery);

}

return result;

}

MapXtreme Java Edition Developer’s Guide 183

Chapter 11: Features and Searches

Feature Editing
MapXtreme allows you to add, modify, or delete Features (points, lines, regions, etc.)
that make up an Annotation layer or a layer populated from a table in a JDBC data
source. This is done using the Layer class methods:

• addFeature

• addFeatureSet

• replaceFeature

• removeFeature

Features that are added to a Layer can be created in the FeatureFactory or can be the
result of performing a search (searchWithin, searchBy, etc.) See page 166 for more on
the FeatureFactory or page 170 for a discussion on searching a layer.

Feature editing can only be performed in a client-side application. Be sure that any
layers that you plan or may need to edit are created using the LocalDataProviderRef.

Although the interfaces for editing Annotation layers and JDBC layers are the same,
the behavior of these two types of layers is different and is addressed in the following
sections.

Editing an Annotation Layer
Annotation layers contain Features that can be used to mark or place emphasis on
certain areas of the map. Annotation layers are not associated with any persistent data
source so changes to Annotation layers are only reflected in the current MapJ. Editing
annotation layers only changes the image rendered for that layer

PrimaryKey of Annotation Layer Features
Because the Features that populate the Annotation Layer can come from many
different sources, their PrimaryKeys may be defined differently or may not be unique.
To overcome this, the Annotation Layer assigns a new PrimaryKey to each new
Feature. The key has a single integer attribute that starts numbering at 1 and
increments sequentially for each new Feature. Even in cases where the inserted
Feature already has a PrimaryKey, a new PrimaryKey is assigned to it. The return
value of the addFeature method is the new PrimaryKey so it is always possible to
obtain the new key if needed.

184 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

CoordSys of Annotation Layer Features
For Annotation layers, the Features are expected to be in the numeric coordinate
system of the MapJ object. When using the FeatureFactory to create Features, it is
necessary to specify the input ordinate arrays in the MapJ numeric CoordSys. When
taking Features from a FeatureSet returned by a search method, the Feature is already
in the MapJ numeric Coordsys.

Editing a JDBC Table Layer
JDBC layers can be defined by either a database table name or a database pass-
through query. However, only those layers defined by a database table name can be
edited (i.e., Features added, replaced or deleted) since the change to the layer is
actually a change to the source database table.

The changes made to the table must be in accordance with any constraints defined in
the table's schema definition. For example, certain columns may be required to be
non-null, unique, have numeric values within a certain range, have numeric values
greater that zero, or have string values within a certain length, etc. Violation of these
constraints will cause the database to throw an Exception.

Additionally, you must have permission to make changes to the database table.

Persistence of Changes to JDBC Table Layer
A successful change to a JDBC table layer results in a change in the source database
table. The change will then be visible in the MapJ the next time the layer data is
refreshed from the database. MapXtreme treats each Feature edit request as a separate
transaction and will immediately commit the change to the database after each
request has successfully completed (or will immediately rollback if a change fails).
When the request is addFeatureSet, a commit (or rollback) occurs for each individual
Feature in the set.

Assignment of PrimaryKey for JDBC Layer Features
Certain conditions exist, depending on the database, regarding the assignment of the
PrimaryKey when adding and replacing Features in JDBC layers. The following
sections describe those conditions for Oracle8i, SpatialWare for Oracle, IUS with
SpatialWare DataBlade, and DB2 with SpatialWare Extender.

MapXtreme Java Edition Developer’s Guide 185

Chapter 11: Features and Searches

Oracle8i with Spatial Option
The following conditions hold for PrimaryKeys of the Feature being edited. In short,
Oracle8i assigns the PrimaryKey or uses the one provided.

• The number of columns allowed for the PrimaryKey is 1...n.

• Columns can be of type integer or type character.

• PrimaryKey is required when using addFeature, optional for replaceFeature.

• If you provide a PrimaryKey for a Feature update, the value in the database is
overwritten. If you do not provide a PrimaryKey, the old one is kept.

• The value in the PrimaryKey identified for the Feature is assigned to the
corresponding column in the database exactly as provided in the Feature.

• PrimaryKey is returned on a successful call to addFeature.

SpatialWare for Oracle and DB2 with SpatialWare Extender
The behavior regarding PrimaryKeys is handled the same way for both SpatialWare
for Oracle and DB2 with SpatialWare Extender. In short, the PrimaryKey is set by
MapXtreme.

• The number of columns allowed for the PrimaryKey is 1...n.

• Columns can be of type integer only.

• PrimaryKey is not required when using addFeature or replaceFeature. Even if
provided, the values in the PrimaryKey for the Feature are ignored.

• The values for the column(s) that comprise the key identified for the table in
the TableDescHelper or discovered by MapXtreme if none were identified are
automatically set to one greater than the maximum value for the column(s).

• PrimaryKey is returned on a successful call to addFeature.

IUS with SpatialWare DataBlade
The following conditions hold for PrimaryKeys of the Feature being edited. In short,
IUS only recognizes SW_MEMBER as the PrimaryKey.

• The number of columns allowed for the PrimaryKey is 1...n.

• Columns can be of type integer only.

• PrimaryKey is not required when using addFeature or replaceFeature. Even if
provided, the values in the PrimaryKey for the Feature are ignored and the
column(s) that comprise the key identified for the table in the
TableDescHelper or discovered by MapXtreme if none were identified in the
TableDescHelper are ignored.

186 MapXtreme Java Edition Developer’s Guide

Chapter 11: Features and Searches

• The column SW_MEMBER is automatically set to one greater than the
maximum value for that column in the table. The column(s) that comprise the
PrimaryKey, if different from SW_MEMBER are not set at all.

• The PrimaryKey is not returned from addFeature as it may not refer to the
same column(s) as the input PrimaryKey.

Transformation of Coordinate System for JDBC Layer Features
It is not necessary that the coordinate system of the Feature be the same as that of the

JDBC database table where it is to be added. MapXtreme expects the Feature to be in
the MapJ numeric coordinate system and will handle all required transformations.

Saving Rendition for JDBC Layer Features
MapXtreme can only save the Feature rendition if the rendition column in the
database table has been previously identified. This must be done in the
TableDescHelper used to create the layer.

In addition, because MapXtreme renditions contain constructs that cannot be
represented in the format RenditionType.mapbasic, MapXtreme can only save
renditions in the format RenditionType.mapxtreme. It can, however, read renditions
in the format RenditionType.mapbasic. If the table rendition column is in format
RenditionType.mapbasic, the Feature rendition is not saved. For addFeature, this
means the column will be null. For replaceFeature, the column will retain its previous
value.

