
Chapter

Chapter 10: Accessing Remote
Data

Accessing Remote Data
One of MapXtreme Java’s strengths is its ability to
access data from remote sources for map rendering
and analysis. This chapter discusses connection
pooling, an efficient way to retrieve remote data.

➤ JDBC Connection Pooling

➤ Connection Pooling with
MapXtremeServlet

➤ Connection Pooling with
MapJ

➤ Configuring a JDB
Connection

➤ Accessing Pooled
Connections

➤ Security Benefits

➤ Connections Manager

10

158 MapXtreme Java Edition Developer’s Guide

Chapter 10: Accessing Remote Data

JDBC Connection Pooling
Establishing JDBC connections to remote databases can be time consuming and
resource intensive. The standard way to minimize these costs is to use connection
pooling. In a connection pooling scheme a group of database connections are created
and then reused and shared among many users. Since connection pooling is much
more efficient than having to create separate connections for each client request, using
connection pooling within MapXtreme Java is strongly recommended.

How Connection Pooling Works in MapXtreme
Typically connection pooling will be used server side with MapXtremeServlet.
Additionally, MapJ can be configured to use connection pooling. Whether connection
pooling is used client side or server side the behavior will be identical. When a JDBC
connection is needed to access data from an RDBMS, an attempt will be made to
retrieve a connection from the pool.

If the pool has an available connection, the connection will be provided to the
application. Otherwise, a new connection will be created. When the task has finished
using the connection it will be returned to the pool, except in the case where the pool
has been filled to its maximum size. In this case, the connection will be closed, and its
resources released.

Connection Pooling with MapXtremeServlet
MapXtremeServlet will utilize connection pooling when a miconnections.properties
file is found on its classpath (the classpath of its context within its parent servlet
container). Any connections described within the miconnections.properties file will be
pre-started during MapXtremeServlet's init method. This guarantees that the
connections will be ready and available to the first clients that visit
MapXtremeServlet.

Connection Pooling with MapJ
Pooling also occurs automatically on the client tier if a miconnections.properties file is
located on the classpath of the application using MapJ. Only one connection pool will
be created per application and this will be utilized by all MapJ instances created
within the application. A MapJ client may need to access a remote data source in the

MapXtreme Java Edition Developer’s Guide 159

Chapter 10: Accessing Remote Data

following circumstances: 1) to perform a search method on a Layer doing local data
access, 2) to obtain metadata information on a Layer doing local data accces, and 3) to
do local rendering. If a connection pool is in place, it is used for each of these tasks.

MapJ also provides access to an MIConnectionPoolManager object. This can be used
to establish additional connection pools at runtime.

Configuring a JDBC Connection
MapXtreme Java manages connection pooling through the miconnections.properties
file. Multiple JDBC connection pools can be set up within this file. Three pooling
properties can be configured when setting up each connection: 1) the number of
connections to pre-start, 2) the maximum number of connections the pool can hold,
and 3) the length of time a connection may remain unused before the connection is
closed and its resources are returned to the application.

The following lines represent a sample entry that could be found in the
miconnections.properties file.

Connection1_name=ProjectMaps

Connection1_driver=oracle.jdbc.driver.OracleDriver

Connection1_url=jdbc:oracle:thin:@hostmachine:port:sid

Connection1_user=mapxtreme

Connection1_password=secret

Connection1_is_xy=false

Connection1_prestart=4

Connection1_max=15

Connection1_timeout=300

Connection1_prefetch=75

The first line specifies the name of the connection, as each JDBC connection pool
should be thought of as a "named resource". Clients will use this to get connections
from the pool.

The next four lines specify the standard information needed to establish a JDBC
connection: the JDBC driver to use, the connection URL of the database, and the user
name and password for the database.

160 MapXtreme Java Edition Developer’s Guide

Chapter 10: Accessing Remote Data

The next line is a peculiarity of MapXtreme Java. This entry informs MapXtreme Java
whether the data source whose connections are being pooled contains spatial objects
or X and Y columns of spatial data.

Note: MapXtreme Java cannot use one pool to access both X,Y and spatial object data;
however, two connection pools can be set up to the same data source.

The next three settings are the connection pool properties for managing the pool's pre-
start and maximum sizes, as well as the idle time before connections are closed.

Additional database specific settings may appear at the end of the list. For example,
an Oracle8i connection may be set up to use a non-default, pre-fetch size.

The miconnections.properties file can be maintained through the stand-alone
Connections Manager utility included with MapXtreme Java (see page 161). The file
can also be modified manually.

Accessing Pooled Connections
Individual Layer objects within MapJ must be created in a certain way to make use of
pooled connections. All DataProviderHelpers for JDBC layers share a common
constructor type that takes the following input parameters:

• String URL

• Properties connectionProps (user, password, pre-fetch, etc.)

• String driverClassName

For a layer to take advantage of connection pooling it must use this form of the
DataProviderHelper constructor and follow a special naming convention. The
connection URL must be in the form:

jdbc:mipool:resource_name

If you are referencing the data source by a named resource, the other input parameters
should be null. For example, to connect to an Oracle8i data source which is set up as
the "ProjectMaps" named resource, you would use the following:

OraSoDataProviderHelper oraDpHelper = new
OraSoDataProviderHelper("jdbc:mipool:ProjectMaps",
null, null);

MapXtreme Java Edition Developer’s Guide 161

Chapter 10: Accessing Remote Data

Security Benefits
A significant benefit to using connection pooling and named resources is that for
three-tier deployments, JDBC connection information remains on the server side and
is only known to MapXtremeServlet. Clients access the JDBC connections by named
resource; sensitive information that describes the connection, such as user name and
password, is not transmitted over the network.

Connections Manager
The Connections Manager is a stand-alone application that provides a user interface
to manage named connections (i.e., edit the contents of the miconnections.properties
file).

Run Connections Manager from the Windows Start menu or at the command line:

java com.mapinfo.dp.util.ConnectionsManager

In order to test your JDBC connection from the Connections Manager, be sure your
JDBC drivers are in the classpath.

Connections Manager will initialize the list of named connections from the
miconnections.properties file. You can create new connections or edit or remove
existing connections.

162 MapXtreme Java Edition Developer’s Guide

Chapter 10: Accessing Remote Data

The Edit dialog of Connections Manager provides three tabs for supplying
information. The General tab collects the name, driver, data source URL, user and
password. It also provides a Test Connection button so you can make sure the
connection is good (test will fail if the appropriate driver is not in the classpath).

The Custom tab provides a place to set custom properties and values, such as pre-
fetch size. The Pool tab contains the number of pre-start and maximum connections
allowed, and the timeout period for idle connections.

