
Appendix A: Customizing the AddLayer Wizard

Overview
The Add Layer Wizard is a guided tool that assists users with adding layers of maps.
It displays when you click on the Add button in the Layer Control dialog. For an
example of the Add Layer Wizard behavior, run the Map Definition Manager and
choose File > New Map Definition. From the Layer Control dialog, click the Add
button to display the Add Layer Wizard. (The Map Definition Manager is discussed in
Chapter 14).

The Add Layer Wizard initializes itself based on values for data sources stored in the
addlayerwizard.properties file. This file is a text file, installed by the MapXtreme Java
installer in your server directory beneath where you installed MapXtreme Java. Most
lines in the file contain a key and a value to associate with that key, separated by a '='.
You can modify the values in this file to change the configuration of the AddLayer
Wizard, including:

• The list of data sources which should appear in the initial list of data sources.

• The list of "Named Resources" which appear when the "Named Resource"
data source is selected from the initial list (this data source does not appear by
default).

• Default and "most-recently-used" values for the data source information steps
of the wizard.

• Default and/or "most-recently-used" values for the initial ("Select a Data
Source") and final ("Specify How the Data Will Be Accessed") steps of the
wizard.

• Whether passwords are saved in the properties file (default is not to save
them.)

244 MapXtreme Java Edition Developer’s Guide

Appendix A: Customizing the AddLayer Wizard

Changing the List of Data Sources
The addlayerwizard.properties file installed by MapXtreme Java is configured to offer
the following list of data sources in the initial step of the wizard:

1. MapInfo TAB file

2. Oracle8i with Spatial Option

3. Oracle 7/8 with SpatialWare

4. DB2 with SpatialWare

5. IUS with SpatialWare

6. Any with X/Y Column Data

7. GeoTIFF Raster

8. ESRI Shape

If you open the addlayerwizard.properties file in your favorite text file viewer, you
will see the following line near the top of the file:

DataSource1=MapInfo TAB file

The “1” indicates this line specifies that the "MapInfo TAB File" data source should be
the first data source in the list. This is followed (in numerical order) by each of the
other data sources in the list above.

Removing Data Sources
If you know that you (or the users of your applet/application) will never want to add
a layer from one of data sources in the above list, you can simply remove it from the
list in the addlayerwizard.properties file. If you remove a data source in the middle of
the list, however, you must then adjust the numbers of any data sources that follow it
in the list. For example, if you remove the following group of entries, because you
don't need to add layers from a DB2 data source:

DataSource4=DB2 with SpatialWare

DataSource4_DPHelper_Page=DataSource4_Page2

DataSource4_DPHelper_Class=com.mapinfo.dp.jdbc.db2sw.Db2S
pwDataProviderHelper

DataSource4_Page_Count=3

DataSource4_Page1=com.mapinfo.beans.addlayer.PageDB2p1

MapXtreme Java Edition Developer’s Guide 245

Appendix A: Customizing the AddLayer Wizard

DataSource4_Page1_Description=Specify DB2 Data Source
Information

DataSource4_Page2=com.mapinfo.beans.addlayer.PageDB2p2

DataSource4_Page2_Description=Specify DB2 Table or Query
Information

DataSource4_Page3=com.mapinfo.beans.addlayer.PageDB2p3

DataSource4_Page3_Description=Specify Other DB2 Table or
Query Information

You must then "move up" all of the data sources that follow it (numerically) in the
properties file. So you would change the DataSource5 group of entries to be
DataSource4 entries, the DataSource6 group of entries to be DataSource5 entries, etc.

We recommend that rather than removing a group of entries from the properties file,
that you comment out that group of entries, by placing a '#' character before each line
in the group of entries. For example, to comment out the DB2 entries, follow the entry
below.

#DataSource4=DB2 with SpatialWare

#DataSource4_DPHelper_Page=DataSource4_Page2

#DataSource4_DPHelper_Class=com.mapinfo.dp.jdbc.db2sw.Db2
SpwDataProviderHelper

#DataSource4_Page_Count=3

#DataSource4_Page1=com.mapinfo.beans.addlayer.PageDB2p1

#DataSource4_Page1_Description=Specify DB2 Data Source
Information

#DataSource4_Page2=com.mapinfo.beans.addlayer.PageDB2p2

#DataSource4_Page2_Description=Specify DB2 Table or Query
Information

By commenting out the lines, if you need to put the data source back into the list, you
can just remove all of the '#'s.

Also of note is that if you remove all of the data sources except for one, the initial step
of the AddLayerWizard, which displays the list of data sources, will not display, since

there is only one data source from which to choose.

246 MapXtreme Java Edition Developer’s Guide

Appendix A: Customizing the AddLayer Wizard

Re-ordering the Data Sources
The number associated with the each group of data source entries determines its place
in the list of data sources that will appear in the initial step of the Add Layer Wizard.

 It is generally a good idea to have those data sources that you use frequently towards
the top of this list. For example, if you know that the users of your applet/application
will most often need to add layers from an IUS data source to their map, you might
choose to make that data source the first in the list. The default
addlayerwizard.properties file indicates the IUS data source will appear as the fifth
data source in the list. To make it the first you would just change its group of entries as
follows:

DataSource1=IUS with SpatialWare

DataSource1_DPHelper_Page=DataSource5_Page2

DataSource1_DPHelper_Class=com.mapinfo.dp.jdbc.iussw.IusS
pwDataProviderHelper

DataSource1_Page_Count=3

DataSource1_Page1=com.mapinfo.beans.addlayer.PageIUSp1

DataSource1_Page1_Description=Specify IUS Data Source
Information

DataSource1_Page2=com.mapinfo.beans.addlayer.PageIUSp2

DataSource1_Page2_Description=Specify IUS Table or Query
Information

DataSource1_Page3=com.mapinfo.beans.addlayer.PageIUSp3

DataSource1_Page3_Description=Specify Other IUS Table or
Query Information

Of course, by doing this you now have two DataSource1 entries in your properties
file. To remedy this, you can increment the numbers associated with the data sources
that should now follow your new number 1 entry.

MapXtreme Java Edition Developer’s Guide 247

Appendix A: Customizing the AddLayer Wizard

Specifying a Named Resources
If you've already looked at the contents of the addlayerwizard.properties file installed
by MapXtreme Java, you may have noticed that it includes a ninth data source,
Named Resource. You may also have noticed that this data source does not appear in
the list of data sources to choose from in the initial step of the wizard. This is because
the addlayerwizard.properties file, as installed, does not have any Named ResourceX
entries from which a user might choose.

These named resource entries are the same named connections that are managed by
the Connections Manager application (see Chapter 10) and stored in the
miconnections.properties file. Named connections provide an easy way to refer to a
particular database connection (or more accurately, a set of database connection
properties).

To give the users of your applet/application the ability to add a layer based on one of
these named connections without specifying any connection information, you add the
named connection to the list of Named Resources in the addlayerwizard.properties.

For example, if you had previously defined a named connection called "Enigma" that
defines a connection to an Oracle8i data source, you would add a pair of entries to the
addlayerwizard.properties file, to make the Add Layer Wizard aware of the named
connection/resource, as illustrated by the bold text below

Named Resources

Add any named resources that appear in
miconnections.properties.

Each named resource entry should include the name of the
resource as well

as the data source which is appropriate for that named
resource.

Sample named resource:

#NamedResource1=snoopy

#NamedResource1_DataSource=DataSource2

In this sample, DataSource2 represents the data source
which is appropriate

for snoopy.

NamedResource1=Enigma

NamedResource1_DataSource=DataSource2

248 MapXtreme Java Edition Developer’s Guide

Appendix A: Customizing the AddLayer Wizard

Add the entries right after the Named Resource comment section in the file, so you
can manage all of your named resources in one place. The comment section also
describes the convention to use when defining a named resource. The only thing
which may not be obvious is this line:

NamedResource1_DataSource=DataSource2

This line indicates that DataSource2 (which by default is the Oracle8i data source) is
the data source that corresponds to the named Enigma connection.

You can add as many of these named resources as you like, provided of course, that
they coincide with named connections in your miconnections.properties file. Once
there is at least one named resource in this list, the "Named Resource" data source will
appear in the list of data sources in the initial step of the wizard.

See Chapter 10: Accessing Remote Data for more information on connections and
named resources.

Specifying Default Values
It is possible to seed the various Add Layer Wizard controls with default values that
will appear pre-selected or specified when the user encounters them. This is very
useful, for example, when it is likely that the users of your applet/application will not
know the connection information for a remote data source, and you would like to
have it filled in automatically for them.

To specify a default value for a control, add a line to addlayerwizard.properties that
indicates the page and control to be set (these are combined to form the "key") and the
default value. For example, if you wanted to set the data source that would appear
pre-selected on the initial DataSourcePage page of the wizard, add a line like this:

DataSourcePage_default_datasource=Oracle8i with Spatial
Option

Note that addlayerwizard.properties is installed with this line already included, and
MapInfo TAB file specified as the default data source.

The convention to use for specifying a default value in addlayerwizard.properties is:

<page>_default_<control name>=<default value>

Note: Do not include double quotes around the default values.

MapXtreme Java Edition Developer’s Guide 249

Appendix A: Customizing the AddLayer Wizard

Setting Defaults for Initial and Final Page Controls
The initial page (step) of the wizard allows the user to select the data source from
which they want to add a layer. The final page allows the user to specify how the data
will be accessed, as well as some other miscellaneous values.

To specify default values for the controls in either of these pages, add lines to the
properties file using the convention described above to specify the default values.

Setting Defaults for Other DataSource Page Controls
Each data source in the Add Layer Wizard has one or more "pages" associated with it,
which are used to query the user for the information necessary to add a specific layer
from that type of data source. If you look at the contents of
addlayerwizard.properties, you will notice the various DataSourceX_PageY entries
within it. The default values you specify will be exclusive to one of these pages in the
wizard.

The table below enumerates the controls of the various DataSourceX pages for which
default values may be specified via the addlayerwizard.properties file.

The Data Source column specifies which data source(s) the value pertains to. "All
remote" denotes that the value is pertinent to all remote database data sources,

Page Control
Name

Control Description

DataSourcePage datasource The data source to pre-select from the
"Available Data Sources" list (eg.
"MapInfo TAB file")

DataSourcePage useprevious True to pre-select the "Use previous
settings as the defaults" option or
False to pre-select the "Use default
property values as the defaults"
option

DataAccessPage servlet True to pre-select the "Access Data Via
Remote MapXtremeServlet" or False
to pre-select the "Access Data Locally"
option

DataAccessPage url URL - the URL of the
MapXtremeServlet

250 MapXtreme Java Edition Developer’s Guide

Appendix A: Customizing the AddLayer Wizard

namely Oracle8i, Oracle 7/8, DB2, IUS, and X/Y. Note the data source values are used
here, since your data source numbers may be different due to re-ordering.

The Page column denotes which page the value is pertinent to.

The Control Name column denotes the internal name of the control that should be
used to specify a default value.

The Control Description column describes which control in the Add Layer Wizard the
key pertains to — in most cases it is the caption of the control.

DataSource Page Control
Name

Control Description

MapInfo TAB 1 table MapInfo Table – full path to.tab
file

All remote 1 host Host – name or IP address of the
host database machine

Oracle8i, DB2, IUS 1 port Port – port on which the remote
database is listening

Oracle8i, Oracle 7/8 1 sid Database Instance (SID)

Oracle8i, DB2, IUS,
X/Y

user User Name

Oracle8i, DB2, IUS,
X/Y

1 pwd Password

Oracle8i, DB2, IUS 1 drivertype Driver Type – one of "use
default", "thin", "thick",
"thickbequeth", "kernel"

Oracle8i 1 rows Number of Rows to Pre-fetch

Oracle 7/8 1 dsn Data Source Name (DSN)

Oracle 7/8 1 dbuser Database User Name

Oracle 7/8 1 dbpwd Database Password

Oracle 7/8 1 hostuser Host User Login

Oracle 7/8 1 hostpwd Host Password

DB2, IUS 1 db Database Name

IUS 1 server Server Name

X/Y 1 driver JDBC Driver Class Name

MapXtreme Java Edition Developer’s Guide 251

Appendix A: Customizing the AddLayer Wizard

X/Y 1 url JDBC Connection URL

GeoTIFF 1 file GeoTIFF File – full path to .tif
file

ESRI Shape 1 shapefile ESRI Shape File – full path to
.shp file

ESRI Shape 1 encoding Char-Set Encoding

All remote 2 table Table

Oracle8i, Oracle 7/8,
DB2, X/Y

2 owner Owner Name

All remote 2 quotes Use Quotes – "true" or "false"

All remote 2 query "true" to pre-select the "SQL
Query" option, or "false" to pre-
select the "Table" option

All remote 2 querytext SQL Query – the text of the SQL
query

All remote 2 idcol ID Column

All remote 3 specify "true" to pre-select the "Use the
following settings:" option, or
"false" to pre-select the "Query
the MAPINFO_MAPCATALOG
for other settings"

Oracle8i, Oracle 7/8,
DB2, IUS

3 spatialcol Spatial Column

X/Y 3 xcol X Column

X/Y 3 ycol Y Column

Oracle8i 3 dimension Geometry Dimension

All remote 3 userenditions Per-feature Renditions – one of
"Don't use", "MapInfo MapBasic
format", "MapXtreme Java
format", "Ask
MAPINFO_MAPCATALOG"

All remote 3 renditioncol Rendition Column

DataSource Page Control
Name

Control Description

252 MapXtreme Java Edition Developer’s Guide

Appendix A: Customizing the AddLayer Wizard

For example, when the user selects the "MapInfo TAB File" data source, you can
define a default MapInfo table to appear filled in the Wizard.

Add a line like this:

DataSource1_Page1_default_table=d:\\maps\\world.tab

Most-Recently-Used (MRU) Values
The Add Layer Wizard can persist the set of values that were most recently used from
session to session. If the Add Layer Wizard has write access to the
addlayerwizard.properties file, it will write out various MRU value lines each time
the "Finish" button is clicked. These values will be pre-set in the initial page of the
wizard if the user selects the "Use previous settings as the defaults" option. This
feature avoids repetitive typing of the same or similar settings on the user’s part.

Note: the Add Layer Wizard is not able to write to this file if deployed within an
applet.

Saving Passwords
By default, the Add Layer Wizard is configured so that it does not save most-recently-
used passwords to the properties file. Passwords are required as part of the
connection information when adding a layer contained in a remote database. For
obvious security reasons, these are not saved in the properties file by default. If,
however, you would like to have your MRU passwords saved in the properties file,
you need only change one line in addlayerwizard.properties. Change the very first
line in the properties file so that it looks like:

Save_Passwords=true

Appendix B: Uploading TAB Data to Remote
Databases

Introduction
EasyLoader v 6.0 is a Windows-only utility available from MapInfo Corporation that
allows you to upload MapInfo .tab files to a remote database. The following databases
are supported:

• Oracle8i (v 8.1.5 or higher)

• Informix Universal Server with SpatialWare DataBlade

• DB2 Universal Server with the SpatialWare Extender

A copy of EasyLoader is available for download from the MapInfo Professional area
of the Try it/Buy It page on the MapInfo website at testdrive.mapinfo.com/mipro.

 Note: Note: This version of EasyLoader does not create or update Rendition
columns in the MAPINFO_MAPCATALOG to support MapXtreme Java’s
per-Feature Rendition feature. If you have already created such columns,
EasyLoader will ignore them. Future versions of EasyLoader will support
Rendition columns. Check the MapInfo Web site for updates . See Appendix C
for more information on MAPCATALOG.

Running EasyLoader
To upload MapInfo .tab files using EasyLoader: Run the EasyLoader executable from
Windows. The EasyLoader dialog displays.

1. At the EasyLoader dialog in the Connection group, click the appropriate
Connection button (Oracle8i or ODBC) to connect your database. Provide the
necessary connection information (e.g., User ID, password and server name).
Click OK to return to the EasyLoader dialog.

2. Click the Tables button to display a list of MapInfo tables from a single
directory. When tables are selected for uploading, the names will display in
the MapInfo Tables list box.

3. Under the Options group, choose Create/Replace table. Uncheck Create
Unique Index and Create Spatial Index if you wish to create them after
uploading.

4. Click the Upload button to start the upload process. Close EasyLoader once
the upload process is finished.

254 MapXtreme Java Edition Developer’s Guide

Appendix B: Uploading TAB Data to Remote Databases

5. If you haven’t already created the Spatial Index during the upload process, do
so now by either executing a create index statement or re-uploading the table,
making sure this time to create the Spatial Index and replace the table (see
steps 1-4).

EasyLoader Options
The Upload button becomes available after you have selected the tables to upload. Be
sure to specify your table options before you upload the tables. The Options are

described below:

Append to Table
The MapInfo table will be
appended to the server table if the
server table exists and the
structure of the two tables match.
Otherwise, you will get an error
and the table will not be uploaded.

Replace/Create Table
The server table of the same name
is first dropped if it exists, then a
new table is created to match the
MapInfo table being uploaded.

Append All to One Table
All MapInfo tables listed are
uploaded to a single server table.
The server table name is the one visible in the Server Table box. This feature is meant
to be used to upload tables with the same structure and symbology to one table. For
example, instead of creating a new table for each street layer, check the Append All to
One box, and only one table will be created. Then all of the tables will be appended to
this table. Note: It is possible that some tables will not be appended if their structure
differs.

When this option is used with the Append to Table option, the tables will all be
appended to the existing server table.

MapXtreme Java Edition Developer’s Guide 255

Appendix B: Uploading TAB Data to Remote Databases

When used with the Replace/Create Table option, the server table will be dropped, a
new table created, and all tables listed will be appended to that one.

Note: All tables should have the same Projection.

Grant Public Access to Table
PUBLIC is granted all access to the server table.

Add to MAPCATALOG
After the table is uploaded, an entry is made in the
MAPINFO.MAPINFO_MAPCATALOG, if it exists.

If the map catalog does not exist, EasyLoader will attempt to create it and issue the
proper grants to it. When using ODBC it will not issue public grants on the
MAPINFO.MAPINFO_MAPCATALOG, which need to be done by other means. If a
user does not have adequate permissions then the creation of the
MAPINFO.MAPINFO_MAPCATALOG will not succeed, and no entry will be made
into the MAPINFO.MAPINFO_MAPCATALOG.

If the table is made up of a single type of object, then the server object type is
restricted to that type, otherwise the type is ALL. Also the symbol clause generated is
based on the server type. Example: after uploading table States.tab the server type
will be X.2 (polygons), and the symbol clause will have only the information for a
polygon.

Exclusive Use of Table
You can speed up load time on large tables significantly if you know that you will be
the only one attempting to update the table. Note however, that specifying this option
does not guarantee that loader will obtain exclusive use; you must guarantee that to
the loader.

The loader checks on the current maximum value of the primary key column (prinx)
after each commit, to ensure that it detects any other entries that may have been made
by other processes. This option will prevent that check from occurring, which can
make a significant change to the run time for large tables.

256 MapXtreme Java Edition Developer’s Guide

Appendix B: Uploading TAB Data to Remote Databases

Create Unique Index
A unique index is created on the column sw_member for SpatialWare or mi_prinx for
Oracle Spatial. The mi_prinx column is a sequential number that is generated by the
loader.

Create Spatial Index
For Oracle Spatial tables the spatial index is created on the geometry column and is

called <table_name>_SX. The index tiling level is based on the
SDO_TUNE.ESTIMATE_TILING_LEVEL function. For tables with fewer than 7500
rows, the tiling level is restricted to 8. After the index is built the ANALYZE table
function is run on the index table.

For SpatialWare tables the index is created on the column geometry column called
hg<table_name>ind. A spatial index is created and Update Statistics is executed after
an rtree index is created for SpatialWare.

You may also build your own spatial index to suit your specific needs. If you choose
to do this, clear this check box to save time in loading.

For more information on how to run EasyLoader, please view the online help

provided with this utility, "EasyLoader.HLP".

Appendix C: MAPINFO_MAPCATALOG

Introduction
The MAPINFO_MAPCATALOG is a registry table for databases that stores metadata
about geometry tables in the database. Using the tablename and ownername as the
key, the MAPINFO_MAPCATALOG identifies the geometry column, geometry type,
projection, projection bounds, and table and feature level rendition information The
MAPINFO_MAPCATALOG is not specific to MapXtreme Java; it is used by several
MapInfo products that access map data from databases.

While many MapInfo products require the MAPINFO_MAPCATALOG to be present,
MapXtreme does not require it if all the data that it would otherwise obtain from the
MAPINFO_MAPCATALOG is provided to it in the TableDescHelper constructors for
table defined layers. Specifically it needs to know the geometry column name,
coordinate system and rendition column information. The absence of any of this data
will cause MapXtreme to query the MAPINFO_MAPCATALOG and to throw an
exception if the data is not available.

If you are familiar with MapInfo Professional, creating a MAPCATALOG is handled
by the MapBasic application MIODBCAT.MBX. It creates a table with MAPINFO as
the user.

MapXtreme Java SQL Scripts
If your database does not have a MAPCATALOG and you do not have access to
MapInfo Professional, we provide SQL scripts that create the MAPCATALOG. The
following files are located in \sampleapps\scripts after installation:

• ORA_MAPCAT.SQL - for Oracle

• IUS_MAPCAT.SQL - for Informix Universal Server

• DB2_MAPCAT.SQL - for DB2

These scripts create a MAPCATALOG that contains three string columns that are new
to MapInfo products: RENDITIONCOLUMN, RENDITIONTYPE and
RENDITIONTABLE. These columns support MapXtreme Java’s ability to store
rendition information on a per-Feature basis.

RENDITIONCOLUMN contains the name of the column in the geometry table that
holds the style information, or null if there is no style column in the geometry table.

258 MapXtreme Java Edition Developer’s Guide

Appendix C: MAPINFO_MAPCATALOG

RENDITIONTYPE column contains an enumeration flag to indicate how the
RENDITIONCOLUMN is to be interpreted by MapXtreme Java. These options are
supported:

• No Per Feature Column Present (1)

• MapBasic style rendition (2)

• MapXtreme Java 3.0 style rendition (3)

The RENDITIONTABLE column is reserved for future use.

The following shows the general create table statement and table structure. For more
specific information for your database, view the SQL script.

Create Table MAPINFO_MAPCATALOG (

SPATIALTYPE Float,

TABLENAME Char,

OWNERNAME Char,

SPATIALCOLUMN Char,

DB_X_LL Float,

DB_Y_LL Float,

DB_X_UR Float,

DB_Y_UR Float,

COORDINATESYSTEM Char,

SYMBOL Char,

RENDITIONCOLUMN Char,

RENDITIONTYPE Integer,

RENDITIONTABLE Char,

XCOLUMNNAME Char,

YCOLUMNNAME Char

)

MAPCATALOG and EasyLoader v 6.0
If you are using MapInfo’s EasyLoader utility to upload MapInfo .tab data into your
database for use in MapXtreme Java, note that EasyLoader creates a MAPCATALOG
that does NOT contain the new Rendition columns. Also note that EasyLoader will
ignore those columns, if they exist, for example, if you created the MAPCATALOG
using the SQL scripts described above. For more on EasyLoader, see Appendix B.

Appendix D: Geocoding Resources

Overview
When creating your own data, such as store locations, ATM machines, or cell towers,
for use with MapXtreme, it must first undergo a process of spatial codification to turn
those records into geographic information. This section describes this process known
as geocoding and presents several products developed by MapInfo Corporation that
can assist you in preparing your data for map display.

Using maps to illustrate geographic relationships within business data is important
for businesses that want to maximize the hidden potential of their data. Spatial
analysis reveals the trends, patterns, and opportunities that otherwise are lost when
sifting through huge databases of information. To take advantage of the power of
mapping and spatial analysis, data must first be enhanced through geocoding.

Geocoding is the process of assigning geographic coordinates (latitude/longitude) to
data. Most business data contain a geographic component such as a street address or a
ZIP Code. A geocoder simply codifies that component to allow spatial analysis or
visual display of the data on a map.

This chapter presents several products offered by MapInfo Corporation that geocode
your data in preparation for displaying it on a map. Consider these when designing
your mapping application with MapXtreme Java Edition. One solution, MapMarker J
Server, has been specifically designed as a Java-based extension to MapXtreme. Other
geocoders include MapMarker for Windows and Sun, MapMarker Plus with GDT’s
premier data set Dynamap 2000, Oracle Geocoding Cartridge, MapInfo Geocoding
DataBlade module for IUS, and MapInfo Professional’s geocoding feature.

MapMarker and MapMarker Plus
MapMarker is MapInfo Corporation’s premier geocoding product that provides batch
and single-record address matching to U.S. street level or ZIP Code centroids. It can be
installed as a stand-alone workstation or on a network server for multi-user access.
MapMarker’s primary function is to match your records to addresses in its Address
Dictionary and assign latitude and longitude coordinates to them. MapMarker
accesses records locally from .TAB or .DBF tables or remotely via ODBC from Oracle,
SpatialWare, Informix, Access, and Excel tables.

260 MapXtreme Java Edition Developer’s Guide

Appendix D: Geocoding Resources

MapMarker and MapMarker Plus for Windows offer a wizard-like user interface that
walks you through the column selection phase prior to geocoding. Choose from
automatic or interactive geocoding (where you choose a match from a list of
candidates), street-level or ZIP Code centroid matching, and geocoding all records in
a table or only unmatched. Other features include the ability to append attributes
from another table to your matched records either during the geocoding pass or as a
separate operation. During interactive geocoding, when MapMarker finds a record it
cannot match and offers you some possible matches, known as candidates, you can

visually check their viability by displaying them on a map before making your choice.
MapMarker’s operations are controlled by a wide variety of system and geocoding
preferences that you can easily control from the interface.

MapMarker and MapMarker Plus are differentiated by their address dictionaries. The
standard MapMarker product includes a U.S. Address Dictionary that combines U.S.
Census Bureau TIGER 1998 files, current USPS ZIP+4 addresses, and GDT’s ZIP+4
centroids. The Address Dictionary is updated twice a year to include recent changes
in address information.

MapMarker Plus provides all the power and features of the standard MapMarker
product, plus an enhanced address dictionary to increase the potential for matches.
This Address Dictionary is updated bimonthly to comply with USPS CASS geocoding
requirements. Instead of straight TIGER 1998 files, the Plus Address Dictionary
contains GDT’s premium Dynamap 2000 database of enhanced address ranges and
streets. Use MapMarker’s CASS geocoding mode to standardize your data according
to USPS postal standards and prepare it for bulk-mailing discounts. CASS geocoding
is the strictest level of address matching available from MapMarker.

MapMarker supports the creation and use of customized address dictionaries to
augment or replace the MapMarker Address Dictionary. For geographic areas that are
expanding faster than MapMarker’s bimonthly data sets can accommodate, you can
build your own table of streets and addresses to increase the geocoding hit rate of
your data.

On the development side, MapMarker and MapMarker Plus for Windows come with
an OCX for integrating MapMarker into your own applications. For even more
control in application development, the underlying OLE Automation API is provided
as well. For C programmers who wish to build a geocoding application from scratch,
the MapMarker Geoengine API and RPC Server API are included.

MapXtreme Java Edition Developer’s Guide 261

Appendix D: Geocoding Resources

MapMarker and MapMarker Plus are available on Sun Solaris in the form of a C API,
RPC Server, and U.S. street-level Address Dictionary.

Also available are geocoding datablades for Informix Universal Server on Solaris, one
for storing X,Y coordinates in separate columns, another for storing the point as a
SpatialWare data type. These datablades are add-on products to MapMarker for Sun
and HP.

MapMarker J Server
This product is the latest development tool in the MapMarker family, well-suited to
intranet or Internet environments where multiple platforms and multiple users are of
concern. MapMarker J Server offers a Java API for creating client geocoding
applications that can be run on the platform of your choice. Because it uses a Java API,
the geocoding client can reside on any platform, such as Windows NT, Sun, or
Macintosh. The client sends geocoding requests to the MapMarker Server, which is
currently limited to running on Windows 95/98, Windows NT, or Sun Solaris or HP.

Use this tool in applications where you need to send geocoding requests over a
corporate intranet via TCP/IP or the Internet via HTTP. The HTTP method requires
that the web server supports servlets, a server-side application that communicates
with the MapMarker Server and geoengine when a firewall blocks the client from
accessing the server via TCP/IP.

The MapMarker J Server product consists of the Java Server, the Java API for creating
the client, sample client and administrator programs, and documentation in HTML
format. MapMarker or MapMarker Plus for Windows or Sun/HP is a required
additional purchase.

Also available as a separate purchase is the MapInfo Geocoding Cartridge that allows
Oracle8i users to access MapMarker and store geocoded records with an Oracle8i
database.

262 MapXtreme Java Edition Developer’s Guide

Appendix D: Geocoding Resources

Geocoding with MapInfo Professional
MapInfo Professional provides an all-purpose geocoding function that geocodes
records to street level or boundary centroid. For street-level geocoding, this requires
county-level tables of StreetInfo or StreetPro. It is suitable for localized geocoding.
Boundary centroid geocoding is appropriate for broad analyses, such as thematic
shading across territories where street-level accuracy for each record in unnecessary.

MapInfo Professional’s geocoder allows you to restrict matching to certain towns or
cities, by specifying a boundary that limits the search area. For example, use a refining
county boundary table when trying to geocode a record on Main St. in a town where
there may be other Main St.’s in towns within the same county. Without the refining
boundary MapInfo would match to the first Main St. it found in the county, not
necessarily the one in the correct town.

Comparing MapMarker with MapInfo’s Geocoding Feature
Both MapMarker and MapInfo Professional’s geocoding processes assign geographic
coordinates and create points for your data so that you can display them in a Map
window. Both geocode to street level accuracy, spotting your records to the exact side
of the street if possible.

The difference between the two geocoding methods is that the MapMarker family of
products can do this using a single nationwide matching table (Address Dictionary)
that allows you to geocode records anywhere in the United States in a single pass.

MapInfo Professional’s geocoder uses county StreetInfo or StreetPro files as its search
table. Each county level file must be opened and searched individually, so geocoding
nationwide cannot be done in one pass.

MapMarker can differentiate among streets with the same name, thus eliminating the
need to use a refining boundary, as is necessary when using MapInfo’s geocoder.

MapMarker provides a lot of control with the accuracy with which it makes a match.
You can set or relax matching conditions to increase the likelihood of a match. If
MapMarker cannot match on street level, it can fall back to ZIP Code centroid in the
same pass. When using MapInfo Professional’s geocoder, geocoding to street level
and ZIP Code centroids must be carried out in separate passes with different data
sets.

Appendix E: Custom Symbols

These custom symbol GIF images can be found in the \server\fonts\custom directory.

AMBU1-32.gif BADG1-32.gif BADG2-32.gif BANK1-32.gif BANK2-32.gif BOOK1-32.gif CAMP1-32.gif

CAR1-32.gif CAUT1-32.gif CHUR1-32.gif COMP1-32.gif DB-CON.gif FARM1-32.gif FAST1-32.gif

FIRE1-32.gif GLOB1-32.gif GOLF1-32.gif HOSP1-32.gif HOUS1-32.gif HOUS2-32.gif HOUS3-32.gif

HYDR1-32.gif INTE1-32.gif LITE1-32.gif LITE2-32.gif MAIL1-32.gif MBOX1-32.gif MBOX2-32.gif

MOSQ1-32.gif ONEW1-32.gif ONEW2-32.gif PENC1-32.gif PIN1-32.gif PIN2-32.gif PIN3-32.gif

PIN4-32.gif PIN5-32.gif PIN6-32.gif POLI1-32.gif RAIL1-32.gif RAIL2-32.gif RAIL3-32.gif

REST1-32.gif STAT1-32.gif STOP1-32.gif SYNA1-32.gif TARG1-32.gif TAXI1-32.gif TEMP1-32.gif

TOWE1-32.gif TOWE2-32.gif TRAF1-32.gif TRUC1-32.gif TRUC2-32.gif YIEL1-32.gif YIEL2-32.gif

Appendix F: Map Definitions and Geosets

Map Definitions
Map Definitions are XML-based text files that describe a set of map layers in
MapXtreme Java. Because they are in XML format, the information can be stored as a
file (extension .MDF) or as a record in a database.

Map Definitions are created using the Map Definition Manager. Any layer that can
display in MapXtreme Java can be saved as a Map Definition using the MDM. For
example, any sample geoset that ships with MapXtreme Java can be saved as a Map
Definition. For instructions on using Map Definition Manager, see Chapter 14:
Managing Your Data.

Geosets
MapXtreme Java can also display map layers that are saved as geosets. Geosets are
files ending in .GST that contain information about a set of layers, and can be loaded
at one time. A geoset is loaded by specifying one at design time (as a property), or
using the AddGeoset method of the Layers object. Additionally, geosets can be loaded
via the Map Definition Manager.

Geosets are limited to MapInfo .tab format files and as a result, cannot be stored as a
record in a database. Additionally, you cannot change the renditions on a per-feature
basis as you can for a Map Definition. Therefore, we strongly recommend that you use
Map Definitions in order to have the most flexibility and control when loading and
displaying layers in MapXtreme Java.

MapXtreme Java ships with a wide variety of data in geosets. The following Appendix
has a complete listing. We recommend that you open any of these sample geosets to
learn more about map layers, then save the geoset as a Map Definition. See the
instructions in Chapter 14.

A geoset file is an ASCII file containing strings that consist of keys and values. The
keys correspond to properties in MapXtreme—properties for the main Map object, as
well as for Layer objects.

266 MapXtreme Java Edition Developer’s Guide

Appendix F: Map Definitions and Geosets

Keys are hierarchical in nature, and are specified as quoted strings. Key values are
also quoted values—even numbers are quoted. The following is a sample showing
some keys and values:

"\geoset\name" = "Europe"

"\geoset\projection" = "3,0,0,25.0,35.0,40.0,65.0,0.0,0.0"

"\geoset\center" = "-534.315701,1476.882519"

"\geoset\mbr\lowerleft" = "-2973.525440,92.890436"

"\geoset\mbr\upperright" = "1904.894038,2860.874602"

"\geoset\zoomlevel" = "4992.000000"

"\table\6\file" = "eurnuts2.tab"

"\table\6\autolabel" = "true"

"\table\6\zoom\min" = "0.000000"

"\table\6\zoom\max" = "300.000000"

"\table\6\display\brush\forecolor" = "16777215"

"\table\6\display\brush\backcolor" = "16777215"

"\table\6\display\brush\transparent" = "0"

"\table\6\display\pen\linestyle" = "1"

"\table\6\display\pen\linewidth" = "1"

"\table\6\label\font\style" = "0"

"\table\6\label\font\size" = "7"

"\table\6\label\font\forecolor" = "8421504"

"\table\6\label\font\backcolor" = "13696976"

"\table\7\file" = "europe.tab"

"\table\7\autolabel" = "true"

"\table\7\label\font\style" = "1"

"\table\7\label\font\description" = "Arial"

"\table\7\label\font\size" = "8"

"\table\7\label\font\forecolor" = "8388608"

"\table\7\label\font\backcolor" = "13696976"

"\table\7\label\linetype" = "0"

"\table\7\label\position" = "0"

MapXtreme Java Edition Developer’s Guide 267

Appendix F: Map Definitions and Geosets

The first 8 lines show keys beginning with \geoset.’ These are keys that set properties
for the entire map, or properties for the Map object. Notice that some keys, like
\geoset\mbr are multi-level—there is a lowerleft and an upperright to describe the
extend of the map.

The remaining lines show some key settings for two layers—europe.tab and
eurnuts2.tab. All layer keys begin with \table. The next word refers to the layer
number. The number corresponds to the position in the map, as seen from top to
bottom in Layer Control. The next level describes properties for a layer, including its
display, labeling, and zoom. In the next level the properties that describe particular
aspects of the layer properties, such as the font used for labeling or pen and brush
used for the display. Every element of how the layer looks is defined in a geoset key.

The following is a summary of the supported geoset keys in MapXtreme Java:

Key Description

\GEOSET\NAME Friendly name of geoset.
PROJECTION Projection clause
CENTER Number, Number – center of the map – MapJ.get/setCenter()
\MBR\LOWERLEFT Number, Number – lower left corner – MapJ.get/setBounds()
\MBR\UPPERRIGHT Number, Number – upper right corner – MapJ.get/setBounds()
ZOOMLEVEL Number – Zoom level of the map – MapJ.get/setZoom()
MAPUNIT Number - corresponds to LinearUnit. 0 = mile, 1 = kilometer, 2 =

inch, 3 = foot, 5 = millimeter, 6 = centimeter, 7 = meter, 8 = survey
foot, 9 = nautical mile, 10 = TWIP, 11 = point, 12 = pica, 30 = link,
31 = chain, 32 = rod.

TABLE\NUMBER
FILE String – name of .TAB file – Layer.get/setName(). TAB file must

be in same directory as .GST. This key preferred over Description
key.

DESCRIPTION String – name of .TAB file – Layer.get/setName(). TAB file must
be in same directory as .GST.

ISVISIBLE TRUE or FALSE whether layer is visible – Layer.is/setVisible()
AUTOLABEL TRUE or FALSE whether layer is autolabeled – Layer.is/setAuto-

label()
SELECTABLE TRUE or FALSE – Corresponds to Layer.is/setSelectable()
 ZOOM\MIN Number - minimum zoom value to display layer – Layer.get/set-

ZoomMin()
 ZOOM\MAX Number – maximum zoom value to display layer - Layer.get/set-

ZoomMax()

268 MapXtreme Java Edition Developer’s Guide

Appendix F: Map Definitions and Geosets

DISPLAY\BRUSH\
PATTERN Number – corresponds to Rendition.FILL
FORECOLOR Number – corresponds to Rendition.FILL
BACKCOLOR Number – corresponds to Rendition.FILLS
TRANSPARENT TRUE or FALSE – corresponds to Rendition.FILTER_EFFECTS –

use Rendition.FilterEffects.NONE for transparent or Rendi-
tion.FilterEffects.BOX for opaque.

DISPLAY\PEN\
LINEWIDTH Number – corresponds to Rendition.STROKE_WIDTH
LINESTYLE Number – corresponds to Rendition.STROKE
COLOR Number – corresponds to Rendition.STROKE
DISPLAY\LINEPEN\
LINEWIDTH Number – corresponds to Rendition.STROKE_WIDTH
LINESTYLE Number – corresponds to Rendition.STROKE
COLOR Number – corresponds to Rendition.STROKE
DISPLAY\SYMBOL\
TYPE Number – Corresponds to Rendition.SYMBOL_MODE
CODE Number – Corresponds to Rendition.SYMBOL_STRING
COLOR Number – Corresponds to Rendition.SYMBOL_FOREGROUND
POINTSIZE Number – Size of symbol in points. Corresponds to Rendi-

tion.FONT_SIZE
LABEL\
ZOOM\MIN Number – minimum zoom value to label layer. LabelProper-

ties.get/setZoomMin()
ZOOM\MAX Number – maximum zoom value to label layer. LabelProper-

ties.get/setZoomMax()
FONT This is the label font. It has the same sub-keys as DIS-

PLAY\FONT above
DUPLICATE TRUE or FALSE – permit duplicate labels. Corresponds to Label-

Properties.get/setDuplicationAllowed()
PARALLEL TRUE or FALSE – Corresponds to LabelProperties.get/setLine-

LabelHorizontal(). A PARALLEL value of TRUE means that hori-
zontal is false, while a value of FALSE means that the label is
horizontal.

OVERLAP TRUE or FALSE – Corresponds to LabelProperties.get/setOver-
lapAllowed()

OFFSET Number – Corresponds to LabelProperties.get/setOffset()
POSITION Number – Corresponds to LabelProperties.get/setHorizontalA-

lignment AND LabelProperties.get/setVerticalAlignment

Key Description

MapXtreme Java Edition Developer’s Guide 269

Appendix F: Map Definitions and Geosets

LABEL\FONT
STYLE Number – Bit Mask (BOLD 0x01), ITALIC 0x02, UNDER 0x04,

STRIKEOUT 0x08, OUTLINE 0x10, SHADOW 0x20, INVERSE
0x40, BLINK 0x80)

EXTSTYLE Number – Bit Mask (HALO 0x01, ALLCAPS, 0x02, DBLSPACE
0x04)

DESCRIPTION String – font name. Corresponds to Rendition.FONT_FAMILY
SIZE Number – size in points
FORECOLOR Number – Corresponds to Rendition.SYMBOL_FOREGROUND
BACKCOLOR Number – Corresponds to Rendition.SYMBOL_BACKGROUND
OPAQUE TRUE or FALSE – Corresponds to Rendition.SYMBOL_OPACITY

Key Description

